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THESIS ABSTRACT

NAME: Syed Awais Wahab Shah

TITLE OF STUDY: Designing blind source separation algorithms for high or-

der QAM signals in MIMO systems

MAJOR FIELD: Electrical Engineering

DATE OF DEGREE: November 2015

This thesis addresses the problem of blind multiple-input multiple-output decon-

volution of a communication system. The main objective is to present efficient

blind source separation (BSS) algorithms using as much a priori information as

possible to reduce the overhead and thus increasing spectrum efficiency and data

throughput. Four new iterative batch blind source separation algorithms are pre-

sented dealing with the multimodulus and alphabet matched criteria. For the

optimization of these cost functions, iterative methods of unitary Givens and

J-unitary hyperbolic rotations are used. Further, we show that the design of al-

gorithm in the complex domain is quite complicated, so a special structure of

real separation matrix is suggested and maintained throughout the design. A pre-

whitening operation is also utilized to reduce the complexity of design problem. It
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is noticed that the designed multimodulus and alphabet matched algorithms using

Givens rotations gives satisfactory performance only for large number of samples.

However, for small number of samples, the algorithms designed by combining

Givens and hyperbolic rotations compensate for the ill-whitening that occurs in

this case and thus improves the performance. Two algorithms dealing with the

multimodulus criterion are presented for low order QAM signals such as 16-QAM.

The other two dealing with the alphabet matched criterion are presented for high

order QAM signals such as 64-QAM and 256-QAM. Proposed methods are finally

compared with several BSS algorithms in terms of signal-to-interference and noise

ratio, symbol error rate and convergence rate. Simulation results show that the

proposed methods outperform the contemporary BSS algorithms. Moreover, out

of all the currently available batch BSS algorithms and the presented ones, the

alphabet matched algorithm designed by combining Givens and hyperbolic rota-

tions is the most efficient one for higher order QAM signals such as 64-QAM and

256-QAM.
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CHAPTER 1

INTRODUCTION

The advancement of technology has been pushing the limits of wireless commu-

nication system for a long time. The ever increasing requirements of a commu-

nication system compelled us to come up with new ideas. High data rate and

bandwidth efficiency are the key demands of modern world. Next generation

systems expect enhancements in throughput and coverage area along with the

consideration of limited power and frequency spectrum. Considering these facts,

the signal processing community has been in search for efficient ways that can

augment the limitation of bandwidth in order to push the limits of traditional

communications. One such method is the blind source separation (BSS), which

will be the main topic of discussion throughout this thesis.

This chapter is organized as follows. First, we introduce some basic concepts

related to blind techniques mainly blind source separation methodology. Next,

we highlight the motivation behind this work and the key contributions. The last

section includes used notations and the overview of various chapters of the thesis.

1
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1.1 Preliminaries

The word “blind” is used by the scientific community to refer to the techniques

which solely rely on the output observations. In addition to the observation sym-

bols, some statistical information about the source symbols is also utilized for

the separation of sources. However, other methods include the use of training

sequences i.e., a part of the data packet and its location is already known to the

receiver. Such training sequences, usually referred as “pilot symbols” are used to

obtain the channel state information (CSI) and thus the source symbols. However,

these pilot symbols reduce the bandwidth efficiency, for example in GSM stan-

dard, training sequences consume 18% of the total bandwidth [1] and in IEEE

802.11n standard, 4 subcarriers are reserved for pilot symbols which occupies

about 7.1% of the available bandwidth [2]. Also, for the transmission of small

data packets, blind techniques are desired as they do not require any training and

thus reduce the overhead. Blind techniques are also favourable for the systems

involving rapidly varying channels, where the number of training sequence trans-

mission must be increased, which may be infeasible in some cases [3]. In short,

the key benefit of blind techniques lies in the increase of spectrum efficiency as it

does not rely on training sequences.

The blind source separation (BSS) problem differs from the blind equalization

by the fact that the system in the former consists of several sources and receivers.

Such a system is referred as multiple-input multiple-output (MIMO). Source sep-

aration as the name suggests is a method which identifies and separates the source

2
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signals from a mixture. For further clarification, consider a MIMO wireless com-

munication system as shown in Figure 1.1, where a number of sources (e.g., cell

phones, laptop and tablet devices) transmit symbols at the same frequency band

and in the same time slot. These symbols are passed through a wireless channel

and linearly mixed together. The objective of the receiver containing an array of

antennas is to identify and separate the symbols from each other. In case of non-

blind technique, we can send some symbols at the start to estimate the channel

by comparing the symbols at the output with the already known sent symbols

(pilots). Once the channel is estimated, we can apply linear inversion to estimate

the data symbols sent later on. However, in the case of blind techniques, the ob-

jective is to estimate the unknown channel and data symbols without using pilots.

Thus, we only rely on the observed signals and utilize some statistical information

about the sources.

Channel
BSS

Algorithm

Figure 1.1: MIMO wireless communications system.

In wireless communication systems, the source signals are mostly either con-

stant modulus (CM) or multimodulus (MM). This CM or MM nature of the source

3



www.manaraa.com

signals is utilized in BSS algorithms, which is discussed below.

1.1.1 Constant Modulus Signals

The phase modulated signals such as phase-shift keying (PSK) and frequency-

shift keying (FSK) have a constant amplitude and all of the information is usually

stored in either phase or frequency. Such signals are called constant modulus

signals and this property of having a constant amplitude is termed as constant

modulus property. For simplicity, the amplitude is normalized to 1 for most

systems. If we represent different samples of a source having this CM property

on a complex plane then all samples will lie on the unit circle as shown in Figure

1.2, where Figure 1.2a shows an example of 8-PSK constellation and 16-PSK is

shown in Figure 1.2b. In BSS algorithms, we can test this property for every

sample of the output signal. Using this concept, a very well defined cost function

is already available in literature, whose optimization results in the estimation of

original sources. This will be explained in detail in Chapter 2.

<

=

1

ι

(a) 8-PSK

<

=

1

ι

(b) 16-PSK

Figure 1.2: Constant Modulus (CM) signals
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1.1.2 Multimodulus Signals

Signals having constellation points distributed in several circles of different radii

are termed as multimodulus signals. They usually contain information in both

amplitude as well as phase such as quadrature amplitude modulation (QAM) sig-

nals as shown in Figure 1.3. Figure 1.3a and 1.3b show the constellation points of

square 16-QAM and 64-QAM, respectively. One can visualize these constellation

points on the radius of circles with different radius. These MM signals are widely

used in many modern communication systems such as LTE [4] and WiMAX [5],

as they are highly spectral efficient. Considering their properties like information

of amplitude as well as phase, a well defined cost function is designed in order to

estimate such kind of sources, which will also be explained in detail in chapter 2.

−1 0 1

−1

0

1

<

=

(a) 16-QAM

−1 0 1

−1

0

1

<

=

(b) 64-QAM

Figure 1.3: Multimodulus (MM) signals

For MIMO systems, there are two types of BSS algorithms on the basis of

functioning i.e., the way the algorithm deals with samples of the source signal.

The following sections include a brief overview of these types of BSS algorithms.

5
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1.1.3 Batch BSS Algorithms

Algorithms which act on the collection of samples of signal i.e., a whole data

packet, are termed as batch BSS algorithms. One has to wait for the arrival of

full data packet in order to apply such algorithms. Usually, they are suitable for

slowly varying channel conditions i.e., where channel changes after an arrival of

at least a single data packet.

1.1.4 Adaptive BSS Algorithms

The output of adaptive algorithms gets updated after every single sample of a

signal. In such algorithms, all parameters get updated continuously with the

arrival of every sample, thus they are suitable for conditions where channel varies

rapidly.

Next, review of BSS algorithms available in literature is presented.

1.2 Literature Review

Blind techniques started with the problem of blind equalization which was first

discussed by Allen and Mazo [6] in 1974. In 1975, Sato [7] presented the first adap-

tive blind equalizer for pulse amplitude modulated (PAM) signals. The original

Constant Modulus Algorithm (CMA) designed for CM signals was presented by

Treichler and Agee [8] in 1983 for amplitude modulated and frequency modulated

signals. This CMA algorithm was able to recover a single source successfully. The

work on both amplitude and carrier phase recovery was started by Benveniste and

6
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Goursat [9] in 1984. For MM signals, the design of the MM cost function and thus

the Multimodulus Algorithm (MMA) was presented by Oh and Chin [10] in 1995.

All of the above mentioned algorithms were presented for SISO systems which is

not the focus of this thesis. Please refer to [11, 12] and [13, 14, 15] and refer-

ences therein to get more details about CM and MM related blind equalization

algorithms, respectively.

For MIMO systems operating on CM signals, the first attempt to design BSS

algorithms was made by Treichler and Larimore [16] and Gooch and Lundell [17]

in 1985 and 1986, respectively. These algorithms became known by the name of

multistage CMA and CM array. The CM array is a combination of CMA and

least mean square (LMS) algorithm and therefore has a poor performance. The

CM array has two stages, first finding a single strongest source signal out of the

number of sources and then estimation of the channel vector corresponding to

that source using LMS algorithm. Once both the source signal and the channel

vector are estimated, they are subtracted from the original data sequence. Then,

the resulting signal passes to the next CMA stage to detect second strongest CM

signal. This procedure can be repeated until all the source signals have been

found. A successful method was proposed by Papadias [18] in 2000 to design a

BSS algorithm for MIMO system by using CMA, known as Multiuser Kurtosis

(MUK). This adaptive algorithm is able to separate all the sources at once and

is also applicable to non-CM signals. It was mainly designed for statistically

independent non-Gaussian signals by maximizing the value of the Kurtosis of

7
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the output. For MIMO systems, out of the numerous implementations for CM

signals, the algebraic solution named as Analytical Constant Modulus Algorithm

(ACMA) is the most famous and widely used algorithm presented by van der

Veen and Paulraj [19] in 1996. It provides the exact solution in the noise-free

case and is capable of separating all sources in a batch mode using only a few

samples. Its design is based on a generalized eigenvalue problem. Later on, van

der Veen analyzed the asymptotic properties of ACMA [20] and also presented

the adaptive form of this algorithm [21] in 2005. To overcome the drawback of

numerical complexity of ACMA, two batch BSS algorithms namely Givens CMA

(G-CMA) and Hyperbolic G-CMA (HG-CMA) were presented in 2014 by Ikhlef

et al. [22, 23]. These algorithms outperform the ACMA. Later on, the adaptive

version of G-CMA was presented by Boudjellal et al. [24].

For MM signals, an adaptive Multi-Modulus Algorithm (MMA) was presented

for MIMO systems by Sansrimahachai et al. [25] in 2002, which outperforms the

MUK algorithm. This algorithm can be termed as MIMO MMA. It is based on

single user MMA and satisfies the orthogonality constraints using Gram-Schmidt

orthogonalization procedure to ensure the independence of estimated signals. See-

ing the popularity of ACMA, the same analytical approach was used for MM

signals and thus an Analytical Multimodulus Algorithm (AMMA) was presented

for MIMO systems by Daumont and Le Guennec [26] in 2010. The authors have

presented the problem as a generalized eigenvalue problem by performing a batch

analytical analysis similar to the ACMA. However, they have not solved the eigen-

8
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value problem for the batch analytical version due to the unavailability of the joint

diagonalization method for non-square matrices. So, they have only implemented

the adaptive version of AMMA and showed that it outperforms the adaptive

ACMA for the case of square QAM. All these algorithms designed for the MM

QAM signals are adaptive but do not work well for higher order QAM constella-

tions. Table 1.1 summarizes the literature review and also shows the unresolved

research problem that we have targeted in this thesis, which is discussed in the

next section.

Table 1.1: Literature Classification

BSS Algorithms CM MM
Batch [19, 22, 23] open

Adaptive [16, 17, 18, 21, 24] [25, 26]

1.3 Motivation and Research Problem

As per our findings, currently no efficient batch BSS algorithm exists dealing

with the MM signals especially high order QAM such as 64-QAM. These QAM

constellations, due to their good spectral efficiency, are popular in many modern

communications systems. Also, many such systems have slowly varying channels

or at least the channel changes after a packet arrival e.g., wireless local area

network (WLAN). So, there is a need for efficient batch BSS algorithms which

are capable of separating the sources in MIMO systems along with the efficient of

use frequency spectrum i.e., without pilots. Moreover, once the batch algorithm

is designed which is efficient for higher QAM signals, it can be easily converted to

9
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adaptive version which would be suitable for rapidly varying channels.

In summary, the focus of this thesis is to design batch BSS algorithms for

MM high order QAM signals used in modern MIMO communication systems. We

will compare our algorithms against the state of art batch BSS algorithms such

as ACMA [19], G-CMA and HG-CMA [22, 23]. We will make the comparison in

terms of signal-to-interference and noise ratio (SINR), symbol error rate (SER)

and convergence rate.

1.4 Notations

A list of the notation used in this thesis along with their description is given in

Table 1.2.

Table 1.2: Table of Notations

Notation Description

(.)T Transpose operation

(.)H Complex conjugate transpose (or Hermitian) operation

x Column vector

xi ith entry of the vector

X Matrix

xij (i, j)-th entry of the matrix

x̂ Estimate of x

xR and xI Real and imaginary parts of x

x Pre-filtered x

X́ Matrix X with all real elements

E[.] Mathematical expectation operator

|.| Modulus function

‖.‖ The l2 norm of a vector

I Identity matrix

10
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1.5 Outline of the Thesis

This thesis is organized as follows. Chapter 2 includes the system model used

throughout the design of algorithms. It also presents the assumptions and prin-

ciples of BSS algorithms. In Chapter 3, the design of batch BSS multimodulus

algorithms is presented. It includes the description of mathematical tools used for

the design of algorithms and the detail of derivations. Simulations results are also

presented at the end of this chapter. Similarly, Chapter 4 presents the design,

derivations and simulation results of alphabet matched algorithms for high order

QAM signals. Some practical considerations related to proposed algorithms are

also presented in this chapter. The major contributions of this thesis and future

work are summarized in Chapter 5.

11
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CHAPTER 2

SYSTEM MODEL AND BSS

PRINCIPLES

In this chapter, we study the general framework and principles of BSS algorithms.

This includes the basic assumptions and mathematical formulation of the BSS

problem. This chapter mainly presents the general idea for solving the BSS prob-

lem.

First, we present the system model for a MIMO wireless communication sys-

tem considered throughout this dissertation. Then, the system parameters are

explained and the notations used for these parameters are introduced. Later on,

we will review the general assumptions and principles related to the BSS prob-

lem. Finally, a widely used cost function for the design of the BSS algorithms is

explained.

12
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2.1 System Model

Channel 1

Receiver

Channel Nr

BSS

User Nt

User 1

QAM

Figure 2.1: MIMO wireless communication system model

Consider Figure 2.1 representing a MIMO wireless communication system.

There are Nt independent sources, each having a single antenna element. They

transmit symbols at the same frequency band and in the same time slot. Each

transmitted source signal s(i) = sR(i) + ιsI(i) is drawn from an L-ary square

QAM constellation where sR(i), sI(i) ∈
{
±1,±3, . . . ,±(

√
L− 1)

}
. At instant i,

the unknown transmitted source signal s(i) is passed through a flat fading channel

which can be referred as an unknown mixing matrix A. The receiver is equipped

with an array of Nr antennas and therefore the received signal with the added

noise can be mathematically represented by a linear system model as

y(i) = As(i) + n(i) (2.1)
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where

y(i) =


y1(i)

...

yNr(i)

 , A =


a11 · · · a1Nt

...
. . .

...

aNr1 · · · aNrNt

 ,

s(i) =


s1(i)

...

sNt(i)

 , and n(i) =


n1(i)

...

nNr(i)


Here

(i) s(i) ∈ CNt×1 is the unknown source vector representing symbols transmitted

at instant ‘i’ from Nt independent sources.

(ii) A ∈ CNr×Nt is the unknown MIMO mixing matrix, whose elements amn

denote the channel path between transmitter n and receiver m. Note that,

in this work we use only flat fading channel.

(iii) n(i) ∈ CNr×1 is the additive white noise vector.

(iv) y(i) ∈ CNr×1 is the received vector.

The objective is to recover the transmitted source signals s(i) without prior

knowledge of the channel or without the use of training sequences (pilots). This

task is accomplished using a BSS algorithm which only relies on the observation

vector y(i) and also uses some source’s statistical information. However, BSS algo-

rithms suffer from some inherent ambiguities which should be taken into account

as discussed next.
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2.2 Blind Source Separation (BSS)

This section gives a brief overview of the underlying assumptions and methodology

of the BSS algorithms.

2.2.1 Assumptions

Our BSS approach is based on the following assumptions which are generally

satisfied in many communication systems.

(i) The mixing matrix A is full column rank which implies that Nr ≥ Nt.

(ii) The sources are zero mean, independent and identically distributed (i.i.d.)

and discrete-valued or more generally sub-Gaussian signals. Sub-gaussian

sources are signals with negative valued kurtosis. Note that all communica-

tion signals satisfy this condition.

(iii) The added noise is white Gaussian with zero mean and covariance matrix

Rn = E[nnH] = σ2
nINr , where INr is (Nr ×Nr) identity matrix.

2.2.2 BSS Approach

The aim of BSS algorithms is to estimate the source signals s(i) blindly (i.e.,

without using pilots and by only relying on the received data y(i)). This is done

using a collection of filtering vectors which are referred as separation vectors and

denoted in this thesis as wj ∈ CNr×1. In order to recover Nt source signals, Nt

such separation vectors are required where each separation vector when applied
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on the received signal y(i) such that wH
j y(i) = zj(i) results in an estimate of the

source signal sj(i), so zj(i) = ŝj(i). These separation vectors are collected in an

(Nt ×Nr) separation matrix W =

[
w1 · · · wNt

]H
, which when applied on the

received signal y(i) gives the desired output as

z(i) = Wy(i) = WAs(i) + Wn(i) = Gs(i) + n̄(i) (2.2)

where z(i) = [z1(i), z2(i), . . . , zNt(i)]
T is the (Nt×1) vector of the estimated source

signals, G = WA is the (Nt ×Nt) global system matrix and n̄(i) ∈ CNt×1 is the

filtered noise at the receiver output. Thus, in BSS problem the objective is to find

separation matrix W.

As discussed in Chapter 1, there are two types of BSS algorithms and we

will focus only on batch BSS algorithms in this thesis. The basic idea of batch

BSS algorithm is already presented in Section 1.1.3. Now, we will present the

mathematical system model for these algorithms in the following section.

2.2.3 Batch BSS System Model

In batch BSS algorithms, Ns samples of the data symbols are collected before

applying the separation procedure i.e., Ns samples of the (Nr × 1) received signal

y(i) are collected for i = {1, . . . , Ns} in a matrix Y ∈ CNr×Ns , which corresponds

to the transmitted source signal matrix S ∈ CNt×Ns . So the collection of received
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signals and transmitted source signals can be written, respectively, as

Y =

[
y(1) · · · y(Ns)

]
S =

[
s(1) · · · s(Ns)

] (2.3)

We can then relate Y and S by a relation similar to (2.1) and relate Z and Y by

a relation similar to (2.2), i.e.,

Y = AS + N

Z = WY

(2.4)

where the noise matrix N ∈ CNr×Ns and the receiver output Z ∈ CNt×Ns are

defined in a way similar to the definition of S in (2.3).

2.2.4 Indeterminacies in BSS and Possible Solution

The BSS method allows the recovery of the source signals up to a possible per-

mutation (i.e., ordering of sources is arbitrary) and scaling factor (i.e., arbitrary

phase) [23] i.e.,

WA = PΛ (2.5)

where P ∈ CNt×Nt is a permutation matrix and Λ ∈ CNt×Nt is a non-singular

diagonal matrix. Thus, (2.5) shows the scale indeterminacies present in BSS

problem. These ambiguities can be removed, when required, using a short training

sequence and a method explained below [27].
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Solution of Permutation Ambiguity

Consider K symbols are inserted in every source data packet S at its start as

pilot symbols and let us denote this known part of data packet by cj ∈ C1×K ,

where j ∈ {1, . . . , Nt} denotes the source number. Similarly, let us collect the

first K estimated symbols from the estimated matrix Z into the (1 ×K) vector

xk, where k ∈ {1, . . . , Nt} denotes the estimated source number. Now, we define

the normalized minimum mean squared error (NMSE) as

NMSE(xk, cj) = log10

[
1−

|xkcH
j |2

‖xk‖‖cj‖

]
(2.6)

Using the NMSE in (2.6) and pilot symbols cj, the permutation ambiguity is

resolved by minimizing the following optimization problem [27]

arg min
k,j∈{1,...,Nt}

NMSE(xk, cj) (2.7)

Solution of Scale Ambiguity

Once the issue of the permutation ambiguity is resolved, the scale ambiguity can

be removed by searching for the complex variable α which minimizes the minimum

mean squared error (MMSE) between the pilot signal cj and the estimated source

signal xj

MMSE = E
[
|cj − αxj|2

]
(2.8)
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Note that, once the permutation ambiguity is resolved, one can be sure about the

ordering of the sources that is why same subscript ‘j’ is used for both pilot signal

cj and estimated signal xj.

2.2.5 Solution to BSS Problem

As explained in Section 2.2.2, the main objective of the BSS problem is to find

the separation matrix W. This section explains the procedure used to find this

separation matrix. In general, BSS is a two step process including a pre-whitening

operation followed by a separation process.

Pre-Whitening Operation

In most of the BSS systems, the number of receivers (sensors) Nr is larger than

the number of sources Nt thus A is a tall matrix. This could result in null-

space solutions and in order to avoid it, a pre-whitening operation is used. This

pre-whitening operation transforms the mixing matrix A to an approximately

unitary matrix and also reduces the dimension of Y from (Nr×Ns) to (Nt×Ns).

Bienvenu and Kopp [28] proved in 1983 that the dominant eigenvectors of the

covariance matrix span the signal subspace, this lead to the design of pre-whitening

procedure. The following procedure is based on the work of van der Veen [11]

presented in 2006.

Let B ∈ CNt×Nr denote the pre-whitening matrix which is selected such that

the resulting received matrix Y is white. So, let R̂y = 1
Ns

∑Ns
i=1 y(i)y(i)H =

1
Ns

YYH be the noisy covariance matrix of received signals with the following
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eigenvalue decomposition (EVD)

R̂y = ÛΣ̂
2
ÛH =

[
Ûs Ûn

]Σ̂
2

s

Σ̂
2

n


ÛH

s

ÛH
n

 (2.9)

where Û is an (Nr ×Nr) unitary matrix and Σ̂
2

is an (Nr ×Nr) diagonal matrix

containing the singular values of Y/
√
Ns. The Nt largest eigenvalues are collected

into a diagonal matrix Σ̂
2

s and the corresponding eigenvectors into Ûs, which span

the signal subspace [28]. Now, the pre-whitening matrix B is defined as

B = Σ̂
−1
s ÛH

s (2.10)

This pre-whitening matrix is selected in this way so that the mixing matrix A can

be transformed into a matrix close to unitary and the resulting received matrix Y

is white i.e., R̂y = INt . Consider the economy-size singular value decomposition

(SVD) of A = UAΣAVH
A, where UA ∈ CNr×Nt is a submatrix of a unitary matrix,

VA ∈ CNt×Nt is unitary matrix and ΣA ∈ CNt×Nt is diagonal and contains the

singular values. Because of the scale indeterminacy inherent to the BSS problem,

we can always scale the columns of A and rows of S to ensure SSH = INt , then

for large number of samples R̂y = Ry, which is written as

Ry = AAH + σ2
nINr =

[
UA U⊥A

]Σ2
A + σ2

nINt

σ2
nINr−Nt


 UH

A

(U⊥A)H

 (2.11)
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Comparing (2.9) and (2.11), we can identify Us = UA and Σ2
s = Σ2

A + σ2
nINt .

Therefore,

BA = Σ−1s UH
s UAΣAVH

A = Σ−1s ΣAVH
A = VH (2.12)

where V = AHBH is (Nt × Nt) unitary if (Σ2
A + σ2

nINt)
−1/2ΣA = INt or a scalar

multiple of INt , which is possible if either there is no noise or if A has orthonormal

columns. If this is not the case, then A is transformed to a matrix which is close

to unitary and still better conditioned than original A. The conditioning of a

matrix is defined as the ratio of largest to smallest singular value and matrix is

said to be well conditioned if this ratio is close to 1.

The pre-whitening matrix B found using the covariance of received signals

using the above defined method is then applied on the received signal. Consider

for simplicity the noise free case here, so the received signal after the pre-whitening

operation can be written as

Y = BY = BAS = VHS (2.13)

After the pre-whitening operation, the problem is reduced to finding a unitary

matrix V, which we will refer to as a filtered separation matrix throughout this

thesis. Finding a unitary matrix is a simpler constraint as compared to finding a

matrix W with independent rows i.e., independent separation vectors wj, because

now we only need to make sure that the rows of V are orthogonal. Moreover, it is

well known in signal processing community that moving to the whitened domain
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increases the convergence speed. Next, we will discuss the procedure to find the

filtered separation matrix V.

Source Separation Procedure

A number of separation methods exist in the literature [29, 30], which are based

upon the minimization of a contrast/cost function. Various cost functions can be

found in the literature [13, 8, 10] depending upon the properties of source signals.

Below, we will present a widely used CM cost function and later on include other

cost functions as per their use in algorithm design. Once V is computed, the

filtering matrix can be expressed as W = VB, resulting in output

Z = WY = VBY = VY = VVHS = Ŝ (2.14)

CM Cost Function

Many communication systems utilize CM signals (e.g., PSK, FSK, see Section

1.1.1). This CM property of the signal can be tested for every output symbol.

Thus, using this information, one proposes to estimate V by minimizing the CM

cost function [8] defined as

JCMA(V) =
Nt∑
j=1

E
[(
|zj(i)|2 −Rj

)2]
(2.15)

where Rj = E[|sj(i)|4]/E[|sj(i)|2] is the dispersion constant obtained by equating

(2.15) to zero and contains the statistical information of the signal. Note that for

22



www.manaraa.com

simplicity, we assume that Rj = R ∀j = 1, . . . , Nt. This cost function is a positive

measure of the amount that the squared modulus of the output signal deviates

from a constant R. As this function only considers the modulus of the output

signal, thus, it is phase blind and the output signal has a phase ambiguity. So, a

phase compensator is usually required to recover the phase of the output signal.

Now, one can visualize the structure inside the BSS block of Figure 2.1, which

is shown in Figure 2.2.

Pre-Whitening
B = Σ−1s UH

s

Source Separation
V

Subspace
Estimation

Cost Function
Optimization

Y Y Ŝ

Figure 2.2: BSS Block Diagram

In the coming chapters, we will use the system model and BSS concepts defined

here. The pre-whitening operation remains the same, however, we will design new

techniques for finding filtered separation matrix V.
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CHAPTER 3

MULTIMODULUS

ALGORITHMS

In this chapter, we will present two new iterative batch BSS algorithms mainly

targeted for square QAM signals. These algorithms are designed on the basis of

multimodulus cost function optimization using Givens and hyperbolic rotations.

We will show that these algorithms outperform the contemporary batch BSS al-

gorithms in terms of convergence rate, SINR and SER.

First of all, some of the mathematical tools that can be utilized for the opti-

mization of cost function are presented in this chapter. Mainly, these tools are

Givens and hyperbolic rotations because they are easy to use and requires less

parameters to be optimized. Then, the MM cost function is reviewed for MIMO

systems, which is used here for the design of algorithms. We will discuss some

technical difficulties faced during the optimization of MM cost function and how

we dealt with them. The major part of this chapter is dedicated for the expla-
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nation of the design of MM algorithms using Givens and hyperbolic rotations.

Finally, a simulation based comparison is presented to evaluate the performance

of the designed algorithms.

3.1 Review of Givens and hyperbolic rotations

3.1.1 Givens Rotations

The unitary Givens rotation matrix Gp,q(θ, α) is an identity matrix except for the

two diagonal elements Gpp,Gqq and two off-diagonal elements Gpq,Gqp in rows and

columns ‘p’ and ‘q’, which are given by

Gpp Gpq
Gqp Gqq

 =

 cos(θ) eια sin(θ)

−e−ια sin(θ) cos(θ)

 (3.1)

where θ ∈ [−π/2, π/2] and α ∈ [−π/2, π/2] are the Givens rotation angle param-

eters. For the case of real transformations, α = 0. Givens rotations have the

following useful properties:

1. Givens rotations are unitary i.e.,

GGH = GHG = I

2. Givens rotations preserve the norm of the vectors i.e., consider two column
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vectors a and b related through Givens rotation as b = Ga, then

‖b‖2 , bHb = aHGHGa = aHa , ‖a‖2

Thus, the vectors have same Euclidean norms.

3.1.2 Hyperbolic Rotations

The J-unitary Hyperbolic rotation matrix Hp,q(γ, β) is an identity matrix, similar

to the Givens rotation matrix, except for the four elements Hpp,Hqq,Hpq and Hqp

defined by Hpp Hpq

Hqp Hqq

 =

 cosh(γ) eιβ sinh(γ)

e−ιβ sinh(γ) cosh(γ)

 (3.2)

where γ ∈ [−Γ,Γ] ,Γ > 0 and β ∈ [−π/2, π/2]. Similar to the Givens rotations,

in the real case, β = 0. The hyperbolic rotation matrix is J-unitary i.e.,

HJHH = HHJH = J

for some diagonal matrix J with ±1 diagonal entries.

For further information related to Givens and hyperbolic rotations, one can

refer to [31, 32].
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3.2 Multimodulus (MM) Cost Function

For multi-modulus signals (e.g., QAM, see Section 1.1.2), one proposes to estimate

the matrix V by minimizing the MM criterion defined by [10] as

JMMA(V) =
Nt∑
j=1

E
[(
z2j,R(i)−RR

)2
+
(
z2j,I(i)−RI

)2]
(3.3)

where RR = RI = E[|sR(i)|4]/E[|sR(i)|2] are dispersion constants of the real and

the imaginary parts, respectively. This cost function is designed in a way that

minimization of it can be interpreted as fitting the signal into a square shaped

signal. Thus, it contains structural information of the QAM signals and also

has an inherent ability to restore the phase of the signal. Moreover, the MM

cost function has several advantages over the CM one [13] and leads to: i) faster

convergence algorithms [33, 34], ii) carrier phase recovery [35], iii) less undesirable

minima [36] and iv) ease in hardware implementation [37].

3.3 MM Algorithms Design

Here, batch BSS algorithms based on the minimization of the MM cost func-

tion are presented, as this cost function is more suitable for QAM signals. To

guarantee a fast convergence with relatively easy implementation, we propose to

decompose the separation matrix V into a product of elementary rotations, simi-

lar to Jacobi-like algorithms [29, 38]. The Jacobi method is generally used for the

diagonalization of symmetric matrices. The idea behind it is to use a sequence of
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unitary transformations such that Y ←− GHYG, where each new Y is more di-

agonal than its predecessor. We will use the same idea to find V using a sequence

of Givens and hyperbolic rotations, where the angle parameters are computed

according to the MM cost function (3.3). So, instead of zeroing the off diagonal

elements (diagonalization), our objective is to minimize the MM cost function.

For large sample sizes Ns � 1, one can assume that the data whitening using

B is efficient and hence the matrix V is searched as a unitary one. In this case,

V is decomposed as a product of Givens rotations leading to Givens Multimod-

ulus Algorithm (G-MMA). For moderate or small sample sizes, estimation of the

covariance of the received signals as shown in (2.9) is inefficient. This results

in ill pre-whitening and one estimates V as a product of Givens and hyperbolic

rotations, which results in Hyperbolic G-MMA (HG-MMA). The latter allows us

to deviate from the unitary condition and hence to search V in a larger space in

order to improve the estimation accuracy.

3.3.1 Motivation for using Real Givens and Hyperbolic

Transformations

The filtered separation matrix V is an (Nt×Nt) matrix, which can be written as

V =


v11 · · · v1Nt

...
. . .

...

vNt1 · · · vNtNt

 (3.4)
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For large number of sources Nt, the difficulty to estimate V increases. In order

to simplify the estimation process, similar to Jacobi-like algorithms, we propose

to decompose V into a product of Nt(Nt− 1) elementary Givens rotations, which

can be written as

V =
∏

NSweeps

∏
1≤p,q≤Nt

Gp,q(θ, α) (3.5)

where NSweeps denotes the number of iterations until convergence. Considering

(3.5) and (3.1), we can notice that each elementary Givens rotation updates a

(2×2) sub-matrix of matrix V. Thus, the filtered separation matrix V is estimated

using an iterative process that utilizes sweeps and it can also be represented as

Vn = Gp,q(θ, α)Vn−1 (3.6)

where n = 1, . . . , NSweeps and 1 ≤ p, q ≤ Nt.

In order to minimize the MM criterion given in (3.3), we only need to find

optimal Givens rotation parameters (θ) and (α) to compute the desired V. Con-

sider a unitary transformation Z = Gp,qY, which according to (3.1) only changes

rows ‘j = p’ and ‘j = q’ of Y such that

zji = y
ji

for j 6= p, q

zpi = cos(θ)y
pi

+ eια sin(θ)y
qi

zqi = −e−ια sin(θ)y
pi

+ cos(θ)y
qi

(3.7)
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As a result of the above mentioned transformation, (3.3) can be re-written as:

JMMA(Gpq) =
Ns∑
i=1

[(
z2pi,R −RR

)2
+
(
z2qi,R −RR

)2
+
(
z2pi,I −RI

)2
+
(
z2qi,I −RI

)2]
+

Ns∑
i=1

Nt∑
j=1
j 6=p,q

[(
z2ji,R −RR

)2
+
(
z2ji,I −RI

)2]
(3.8)

where we can omit the constant terms of Z independent of (θ, α) i.e., zji for

j 6= p, q. After some manipulations, the four terms of zpi and zqi involved in

the cost function (3.8), results in a function of seven different non linear terms

involving parameters (θ, α) given in Appendix A. Therefore, further analytical

simplification and thus the solution of (3.8) is quite complicated. Similar is the

case with hyperbolic rotations. These difficulties motivated us to come up with a

different solution explained next.

Remark: Until now, we were working in the complex domain (i.e., all matrices Y,

V etc. were complex) and in order to deal with the above mentioned challenges,

we will now work in real domain. We have presented this work in [39, 40].

3.3.2 Givens MMA (G-MMA)

To deal with previously mentioned difficulties, we consider here a version of G-

MMA using real matrices. Hence, the pre-whitened complex received signal matrix

Y is first converted into a real matrix Ý containing real and imaginary parts in

separate rows as defined in (3.10). Moreover, a special structure of the matrix V

is introduced and maintained while applying the rotations. The transformed real
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received signal (neglecting noise) and output signal can now be written as

Ý = V́TŚ, Ź = V́Ý (3.9)

where

Ý =

YR

YI

 (2Nt ×Ns), V́ =

VR −VI

VI VR

 (2Nt × 2Nt) (3.10)

Similarly, Ś and Ź are now (2Nt×Ns) real matrices, which can be represented in

a way similar to the definition of Ý in (3.10). In order to find the required matrix

V́, considering Lemma 1 of [30], the following sequence of real Givens rotations

are used as a counterpart of (3.5)

V́ =
∏

NSweeps

∏
1≤p,q≤Nt

p 6=q

Gp,q(θ)Gp+Nt,q+Nt(θ)Gp,q+Nt(θ̇)Gq,p+Nt(θ̇)
∏

1≤p≤Nt

Gp,p+Nt(θ̈) (3.11)

Remark: V́ obtained using the sequence of real Givens rotations shown in (3.11)

corresponds to same complex V given in (3.5).

The rotations Gp,q(θ) and Gp+Nt,q+Nt(θ) are applied successively using the same

angle parameter (θ). Similarly, the rotations Gp,q+Nt(θ̇) and Gq,p+Nt(θ̇) are applied

with another angle parameter (θ̇). Note that, these rotations are applied in this

way in order to preserve the structure of V́ given in (3.10) [30]. The rotation

Gp,p+Nt(θ̈) is applied to deal with the phase shift introduced by the diagonal

entries of the mixing matrix A.

31



www.manaraa.com

We only need to find rotation angle parameters (θ) , (θ̇) and (θ̈) in order to

minimize the MM criterion (3.3), using above explained iterative method. Later

on, we will express the MM cost function in terms of the angle parameter (θ)

which is computed such that JMMA(θ) is minimized. Now, consider a unitary

transformation Ź = Gp,qÝ, which according to (3.1) only changes the rows ‘p’

and ‘q’ of Ý such as

źji = ý
ji

for j 6= p, q

źpi = cos(θ)ý
pi

+ sin(θ)ý
qi

źqi = − sin(θ)ý
pi

+ cos(θ)ý
qi

(3.12)

Similarly, the rotation Gp+Nt,q+Nt with the same angle parameter (θ) modifies the

rows ‘p + Nt’ and ‘q + Nt’ in a similar way as shown in (3.12). Note that for

simplicity, we keep the notation Ý unchanged even though the matrix is modified

after each rotation. Now, (3.3) can be re-written in terms of the Givens angle

parameter (θ) (omitting the terms of Ź that are independent of (θ) and assuming

for simplicity that RR = RI = R)

JMMA(θ)=
Ns∑
i=1

[(
ź2pi −R

)2
+
(
ź2qi −R

)2
+
(
ź2p+Nt,i −R

)2
+
(
ź2q+Nt,i −R

)2]
(3.13)

Let’s express (3.13) in a more compact form. Starting from (3.12) and using
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following double angle identities

cos2(θ) =
1

2
(1 + cos(2θ))

sin2(θ) =
1

2
(1− cos(2θ))

sin(2θ) = 2 sin(θ) cos(θ)

(3.14)

we can write

ź2pi = tTi v +
1

2

(
ý2
pi

+ ý2
qi

)
ź2qi = −tTi v +

1

2

(
ý2
pi

+ ý2
qi

) (3.15)

where

v =

[
cos(2θ) sin(2θ)

]T
ti =

[
1
2
(ý2
pi
− ý2

qi
) ý

pi
ý
qi

]T (3.16)

This allows to express the first two terms in (3.13) as

(
ź2pi −R

)2
+
(
ź2qi −R

)2
= 2vTtit

T
i v + 2

(
ý2
pi

+ ý2
qi

2
−R

)2

(3.17)

which is a sum of a quadratic form and a constant term independent of (θ).

Similarly, the terms z2p+Nt,i and z2q+Nt,i can be obtained by replacing the indices

‘p’ and ‘q’ with ‘p + Nt’ and ‘q + Nt’, respectively in (3.15). Thus, the last two

terms in (3.13) can be written as

(
ź2p+Nt,i −R

)2
+
(
ź2q+Nt,i −R

)2
= 2vTt́it́

T
i v

+ 2

(
ý2
p+Nt,i

+ ý2
q+Nt,i

2
−R

)2

(3.18)

33



www.manaraa.com

where t́i =

[
1
2
(ý2
p+Nt,i

− ý2
q+Nt,i

) ý
p+Nt,i

ý
q+Nt,i

]T
. Combining (3.17) and (3.18),

we can express J (θ) as a quadratic form (up to a constant term that is irrelevant

in determining the optimum value of θ)

JMMA(θ) = vT
Ns∑
i=1

[
tit

T
i + t́it́

T
i

]
v = vTTv (3.19)

which is a (2× 2) eigenvalue problem and can be solved explicitly (see Appendix

B). Thus, the solution v◦ =

[
v◦1 v◦2

]T
that minimizes (3.19) is given by the unit

norm eigenvector of T corresponding to the smallest eigenvalue and using (3.16),

we can write

cos(θ) =

√
1 + v◦1

2
and sin(θ) =

v◦2√
2(1 + v◦1)

(3.20)

Using (3.20), the computation of Gp,q and Gp+Nt,q+Nt follows directly from (3.1).

The remaining Givens rotations Gp,q+Nt(θ̇) and Gq,p+Nt(θ̇) can be found similarly

and applied successively on Ý to compute the filtered separation matrix V́ accord-

ing to (3.11). The Givens rotation Gp,p+Nt(θ̈) for ‘p = q’ can be found similarly by

following the above explained method. By replacing ‘q’ with ‘p+Nt’ in (3.16) and

(3.17), the cost function (3.3) (with the constant terms omitted) can be written

as

JMMA(θ̈) = vT
Ns∑
i=1

[
tit

T
i

]
v = vTT́v (3.21)

Hence, the solution v◦ is the least unit norm eigenvector of T́ and Gp,p+Nt(θ̈) is
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Table 3.1: Givens MMA (G-MMA) Algorithm

Initialization: V́ = I2Nt
1. Pre-whitening: Y = BY using (2.10) O(NsN

2
r )

2. Construct real matrix Ý using (3.10)
3. Givens Rotations: (20NsN

2
t ) +O(NsNt)/Sweep

for n = 1 : NSweeps do
for p = 1 : Nt do

for q = p : Nt do
if p = q then

a) Compute Gp,p+Nt using (3.21), (3.20) and (3.1) for θ̈ (6Ns)

b) Ý = Gp,p+NtÝ (4Ns)

c) V́ = Gp,p+NtV́
else

d) Compute Gp,q &Gp+Nt,q+Nt using (3.19), (3.20) and (3.1) for same
(θ) (12Ns)
e) Ý = Gp,q Gp+Nt,q+NtÝ (8Ns)

f) V́ = Gp,q Gp+Nt,q+NtV́
repeat (d to f) for (p, q +Nt) & (q, p+Nt) using same (θ̇) (20Ns)

end if
end for

end for
end for
4. Construct complex matrix W similar to V using (2.14) and (3.10)
5. Estimated Sources: Ŝ = WY

computed using (3.20) and (3.1). Matrix V́ is initialized as V́ = I2Nt and the

overall algorithm is summarized in Table 3.1.

3.3.3 Hyperbolic G-MMA (HG-MMA)

For a small number of samples Ns, the pre-whitening operation is not effective

and thus the transformed channel matrix A may be far from a unitary matrix.

In this case, the performance of G-MMA decreases and thus the J-unitary real

hyperbolic rotations are applied alternatively along with the Givens rotations to

overcome this limitation. This results in an algorithm named Hyperbolic Givens
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MMA (HG-MMA). So, now the matrix V́ can be decomposed into a product of

elementary hyperbolic rotations, Givens rotations, and normalization transforma-

tion as follows

V́ =
∏

NSweeps

∏
1≤p,q≤Nt

p 6=q

Γp,qΓp+Nt,q+NtΓp,q+NtΓq,p+Nt

∏
1≤p≤Nt

Gp,p+Nt(θ̈) (3.22)

where

Γp,q = N p,qGp,qHp,q

Here N p,q,Gp,q and Hp,q refer to the normalization, Givens and hyperbolic trans-

formations, respectively. Similar to the Givens rotations, the hyperbolic rotations

Hp,q and Hp+Nt,q+Nt are applied using the same parameter (γ) while Hp,q+Nt and

Hq,p+Nt are applied using another same but opposite parameter (γ̇) and (−γ̇),

respectively. We will consider dispersion parameters RR and RI be equal to 1

and use N p,q for normalization which is a diagonal matrix with diagonal elements

equal to one except for the two elements Npp = λp and Nqq = λq. Below we give a

brief of finding the hyperbolic and the normalization transformation parameters

to minimize the MM criterion (3.3).

Calculating the Hyperbolic and Givens rotations

Similar to the Givens rotations, let us consider one hyperbolic transformation

Z = Hp,qÝ, which according to (3.2) only changes the rows ‘p’ and ‘q’ of Ý such
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as

źji = ý
ji

for j 6= p, q

źpi = cosh(γ)ý
pi

+ sinh(γ)ý
qi

źqi = sinh(γ)ý
pi

+ cosh(γ)ý
qi

(3.23)

Similarly, the rotation Hp+Nt,q+Nt uses the same parameter (γ) and modifies the

rows ‘p+Nt’ and ‘q +Nt’ in a similar way as in (3.23).

Now let’s see how we can represent the MM criterion (3.13) for the hyperbolic

parameters. To this end, we set the dispersion parameters to 1. Moreover, as

derived for the Givens rotations, using following hyperbolic double angle identities

cosh2(γ) =
1

2
(cosh(2γ) + 1)

sinh2(γ) =
1

2
(cosh(2γ)− 1)

sinh(2γ) = 2 sinh(γ) cosh(γ)

(3.24)

we can show that

ź2pi = rTi u +
1

2

(
ý2
pi
− ý2

qi

)
ź2qi = rTi u− 1

2

(
ý2
pi
− ý2

qi

) (3.25)

where

u =

[
cosh(2γ) sinh(2γ)

]T
ri =

[
1
2
(ý2
pi

+ ý2
qi

) ý
pi
ý
qi

]T (3.26)

Similar expressions can be derived for z2p+Nt,i and z2q+Nt,i. Substituting these ex-
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pressions in (3.13) and omitting the terms that are independent of (γ) yields

JMMA(γ) = uT

[
Ns∑
i=1

rir
T
i + ŕiŕ

T
i

]
u− 2uT

[
Ns∑
i=1

ri + ŕi

]

= uTRu− 2uTr

(3.27)

where ŕi =

[
1
2
(ý2
p+Nt,i

+ ý2
q+Nt,i

) ý
p+Nt,i

ý
q+Nt,i

]T
. The optimization problem in

(3.27) can be solved using either Lagrange multiplier method (exact solution) or

by taking linear approximation of hyperbolic sine and cosine around zero (approx-

imate solution). Both methods are discussed below.

A) Exact Solution

Using the Lagrange multiplier method, the optimization problem in (3.27) can be

written as

min
u
F(u) = uTRu− 2rTu s.t. uTJ2u = 1 (3.28)

where J2 = diag([1,−1]), such a constraint is equivalent to cosh2(2γ)−sinh2(2γ) =

1. The Lagrangian of (3.28) can be written as

L(u, λ) = uTRu− 2rTu + λ
(
uTJ2u− 1

)
(3.29)

The solution of this Lagrangian is given by

u = (R + λJ2)
−1r (3.30)

where λ is the solution of the 4-th order polynomial equation (see Appendix C).
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Using (3.30) in constraint equation results in

rT(R + λJ2)
−1J2(R + λJ2)

−1r = 1 (3.31)

Of the four roots of (3.31), we use the real value of λ that results in the minimum

value of L(u, λ). We then solve for u◦ = [u◦1, u
◦
2]

T from (3.30) and solve for the

hyperbolic sine and cosine of (γ) as

cosh(γ) =

√
1 + u◦1

2
and sinh(γ) =

u◦2√
2(1 + u◦1)

(3.32)

which allows us to construct the hyperbolic rotations Hp,q and Hp+Nt,q+Nt defined

in (3.2).

For the remaining hyperbolic rotations Hp,q+Nt and Hq,p+Nt , the optimization

problem in (3.27) is conducted for another hyperbolic parameter (γ̇) using

ri =

[
1
2
(ý2
pi

+ ý2
q+Nt,i

) ý
pi
ý
q+Nt,i

]T
ŕi =

[
1
2
(ý2
qi

+ ý2
p+Nt,i

) −ý
qi
ý
p+Nt,i

]T

Then, the modified optimization problem is minimized using the same method as

explained above. This provides the solution ú◦ = [ú◦1, ú
◦
2]

T and we have

cosh(γ̇) =

√
1 + ú◦1

2
and sinh(γ̇) =

ú◦2√
2(1 + ú◦1)

(3.33)

The computation of the hyperbolic rotations Hp,q+Nt(γ̇) and Hq,p+Nt(−γ̇) follows
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directly from (3.33) and (3.2). Note that these rotations are applied using same

but opposite hyperbolic angle parameter (γ̇). It is equivalent to saying that the

hyperbolic rotations Hp,q+Nt and Hq,p+Nt have same diagonal and opposite off-

diagonal elements.

B) Approximate solution

In this approach, we will consider the linear approximation of hyperbolic sine and

cosine around zero given by

sinh(2γ) ≈ 2 sinh(γ) and cosh(2γ) ≈ cosh(γ) (3.34)

Now, let us define the elements of symmetric matrix R and vector r used in (3.27)

as

R =

r11 r12

r21 r22

 and r =

r1
r2

 (3.35)

Using (3.26), (3.35) and neglecting the terms independent of (γ), the cost function

(3.27) can be re-written as

JMMA(γ) = cosh(4γ)
r11 + r22

2
+ sinh(4γ)r12 − 2 cosh(2γ)r1 − 2 sinh(2γ)r2 (3.36)

Setting the derivative of (3.36) w.r.t (γ) to zero and using (3.34), we obtain

sinh(2γ) (r11 + r22 − r1)− cosh(2γ) (r2 − r12) = 0 (3.37)
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and thus the solution (γ) is

γ =
1

2
arctanh

(
r2 − r12

r11 + r22 − r1

)
(3.38)

In a similar way, the hyperbolic rotation parameter (γ̇) can be found using ap-

propriate R and r as explained in section 3.3.3A. The hyperbolic rotations are

computed using (3.38) and (3.2) and applied accordingly as explained in section

3.3.3A.

After applying the hyperbolic rotations, Givens rotations are applied in a

similar way as explained in section 3.3.2 and then normalization rotations are

applied as explained below.

Calculating the normalization transformations

The normalization transformation is applied in order to compensate for the dis-

persion parameters RR and RI . Let’s consider that we have transformed only one

row ‘p’ of the pre-whitened complex received matrix Y, which corresponds to the

transformation of rows ‘p’ and ‘p + Nt’ for pre-whitened real received matrix Ý.

In this case, the normalization transformation N p is an identity matrix except

for the two diagonal elements Npp = λp and Np+Nt,p+Nt = λp and the MM cost

function (3.3) (with the constant terms omitted) can be written as

JMMA(λp)=
Ns∑
i=1

[((
λpýpi

)2
− 1

)2

+

((
λpýp+Nt,i

)2
− 1

)2
]

(3.39)
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Taking the derivative of (3.39) w.r.t (λp) and setting the result to zero gives

optimal normalization parameter as

λp =

√√√√∑Ns
i=1 ý

2

pi
+ ý2

p+Nt,i∑K
i=1 ý

4

pi
+ ý4

p+Nt,i

(3.40)

The normalization matrices N p,q and N p+Nt,q+Nt are calculated using (3.40).

They are identity matrices except for the diagonal elements Npp = Np+Nt,p+Nt =

λp and Nqq = Nq+Nt,q+Nt = λq, where λq is obtained by replacing ‘p’ with ‘q’ in

(3.40). The remaining normalization matrices can be found similarly.

During simulations, we have observed that the normalization rotation is not

necessary at each step and can be performed only once per sweep. In this case

the normalization matrix N is a diagonal matrix of dimension 2Nt with diagonal

elements Npp = Np+Nt,p+Nt = λp given as in (3.40) where 1 ≤ p ≤ Nt. HG-MMA

is presented in Table 3.2.

3.4 Simulation Results

In order to evaluate the performance of the proposed algorithms, simulation results

are presented in this section. The system model is implemented on MATLAB soft-

ware (from MathWorks Inc., Natick, MA). Due to lack of any batch BSS algorithm

dealing with the MM criterion, we have shown a comparison with contemporary

batch BSS algorithms such as ACMA, G-CMA and HG-CMA. As a performance
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Table 3.2: Hyperbolic Givens MMA (HG-MMA) Algorithm

Initialization: V́ = I2Nt
Subspace projection or approximate pre-whitening using (2.10) if Nr > Nt

O(NsN
2
t )

1. Create real matrix Ý using (3.10)
2. Hyperbolic, Givens & Normalization Rotations: (40NsN

2
t ) +O(NsNt)

for n = 1 : NSweeps do
for p = 1 : Nt do

for q = p : Nt do
if p = q then

a) Apply Givens rotation using (a to c) of Table 3.1 (10Ns)
else

b) Compute Hp,q & Hp+Nt,q+Nt using (3.32) and (3.2) for (γ) (12Ns)

c) Ý = Hp,qHp+Nt,q+NtÝ (8Ns)

d) V́ = Hp,qHp+Nt,q+NtV́
e) Apply Givens rotation using (d to f) of Table 3.1 (20Ns)
repeat steps (b to e) for (p, q+Nt) & (q, p+Nt) using (θ̇, γ̇) & (θ̇,−γ̇),
respectively (40Ns)

end if
end for

end for
f) Compute N using (3.40) (6NsNt)
g) Ý = N Ý (2NsNt)
h) V́ = N V́

end for
4. Construct complex matrix W similar to V using (2.14) and (3.10)
5. Estimated Sources: Ŝ = WY

measure, SINR, convergence rate and SER are used where SINR is defined as

SINR =
1

Nt

Nt∑
j=1

SINRj (3.41)

with

SINRj =
|gjjsj|2/Ns∑

l,l 6=j |gjlsl|2/Ns + wjRnwH
j

(3.42)

where SINRj is the signal to interference and noise ratio at the jth output with

gij = wiaj, where wi and aj are the ith row vector and jth column vector of
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separation matrix W and mixing matrix A, respectively. Rn = E[nnH] = σ2
nINr

is the noise covariance matrix and sj is the (1 × Ns) source signal vector at jth

input.

We consider a MIMO system consisting of 5 transmitters and 7 receivers (Nt =

5, Nr = 7) with the data model given in Section 2.1. Every uncoded data symbol

transmitted by each source is drawn from 16-QAM and 64-QAM constellations.

The resulting signals are then passed through a channel matrix A, generated

randomly at each Monte Carlo run with controlled conditioning and with i.i.d

complex Gaussian variable entries of zero mean and unity variance. The noise

variance is adjusted according to specified signal to noise ratio (SNR). Further,

sources, noise and channel have the same properties as specified in Section 2.2.1.

The results are averaged over 1000 Monte Carlo runs.

3.4.1 Experiment 1: Exact vs. Approximate Solution of

HG-MMA

In this experiment, we compare the performance of exact and approximate solu-

tions of HG-MMA in terms of SINR vs. SNR for 16-QAM and 64-QAM constella-

tions. The number of sweeps NSweeps and samples Ns are set equal to 10 and 100,

respectively. From Figure 3.1, we notice that both the exact and approximate so-

lutions have the same performance for the considered constellations. Therefore, in

the following simulations for the HG-MMA, we will use the approximate solution,

as it is cheaper and easier to implement.
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Figure 3.1: Average SINR of exact and approximate solution of HG-MMA vs.
SNR for Nt = 5, Nr = 7, Ns = 100 and NSweeps = 10 considering both 16-QAM
and 64-QAM.

3.4.2 Experiment 2: Finding Optimum Number of Sweeps

Here, we examine the effect of the number of sweeps NSweeps on the performance of

the G-MMA and HG-MMA. Figure 3.2 compares the SINR vs. SNR for different

number of sweeps. In this simulation, Ns = 150 symbols are drawn from 16-QAM

constellation. We notice that the performance of proposed algorithms increases

with the number of sweeps and remains almost unchanged after 5 sweeps. So, in

the following simulations we will fix the number of sweeps to 10. Moreover, it can

be seen that for a small number of sweeps, the G-MMA performs better than the

HG-MMA but after 5 sweeps HG-MMA takes the lead.
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Figure 3.2: Average SINR of HG-MMA and G-MMA vs. SNR for different NSweeps

considering Nt = 5, Nr = 7, Ns = 150 and 16-QAM constellation.

3.4.3 Experiment 3: Comparison of Rate of Convergence

In Figure 3.3, we have compared the convergence rate of the proposed and bench-

marked algorithms which are iterative like G-CMA and HG-CMA. The SNR is

fixed at 20 dB and Ns is selected as 200 and 700 for 16-QAM and 64-QAM, respec-

tively. It can be noticed that all the algorithms converge in 5 sweeps. However,

the performance of the proposed algorithms HG-MMA and G-MMA is better than

those of the HG-CMA and G-CMA.

3.4.4 Experiment 4: Effect of the Number of Samples

Figure 3.4a and 3.4b, show the SINR performance of our proposed algorithms with

the aforementioned algorithms vs. the number of samples Ns for 16-QAM and
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Figure 3.3: Average SINR of HG-MMA, G-MMA, HG-CMA, G-CMA vs. NSweeps

for Nt = 5, Nr = 7 and SNR = 20dB.
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64-QAM constellations, respectively. The SNR is fixed at 30dB for both figures.

It can be noticed that, as expected, the larger the number of samples the better

the performance of proposed as well as other algorithms. The reason is that for

the large number of samples, whitening is effective and thus mixing matrix A

can be inverted more accurately using W. It can be seen that the HG-MMA

takes the lead among all other algorithms, which is more significant for the higher

QAM constellation (i.e., 64-QAM). For large number of samples and low order

constellations, the performance of ACMA is quite close to G-CMA and HG-CMA,

however, our proposed algorithms still performs better than all of them.

3.4.5 Experiment 5: Comparison based on SINR

Figure 3.5a compares the SINR performance of the proposed and benchmarked

algorithms as a function of SNR. In this figure, two different number of samples

(Ns = 50 and Ns = 200) are considered for 16-QAM constellation. As noticed

previously, all algorithms perform better for large number of samples. Also, the

difference between the performance of the HG-MMA and G-MMA increases with

the increase in number of samples. The G-MMA cannot perform well for small

number of samples because of the ineffective pre-whitening operation. For all

algorithms, SINR is proportional to SNR. The highest SINR is obtained with the

proposed HG-MMA algorithm, followed by the G-MMA and HG-CMA, then by

the G-CMA and the lowest SINR is obtained with the ACMA algorithm. It is

very clear from the figure that the ACMA with small number of samples is not
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Figure 3.4: Average SINR of HG-MMA, G-MMA, HG-CMA, G-CMA and ACMA
vs. the number of samples Ns for Nt = 5, Nr = 7, SNR = 30dB and NSweeps = 10.

suitable for the QAM constellation.

In Figure 3.5b, we consider the case of 64-QAM constellation with two different
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number of samples (Ns = 150 and Ns = 700). It is noticed that the performance

of proposed algorithms is significantly better than other algorithms even for small

number of samples Ns. For an SNR lower than 10dB and large number of samples,

the performance of all algorithms is nearly the same but for 15dB and above, the

proposed algorithms perform better than the rest of the algorithms.

3.4.6 Experiment 6: Comparison based on SER

Figure 3.6a and 3.6b depict the SER of proposed and benchmarked algorithms vs.

SNR for the case of 16-QAM and 64-QAM constellations, respectively. In both

figures, different number of samples are considered i.e., for 16-QAM (Ns = 50 and

Ns = 200) and for 64-QAM (Ns = 150 and Ns = 700). As noticed previously, the

performance of the HG-MMA is significantly better than all the other algorithms.

Comparison of Figure 3.6a and 3.6b show that in the case of lower QAM (such as

16-QAM) for small number of samples, the performance of proposed algorithms

is nearly the same, however, for higher constellations (such as 64-QAM), HG-

MMA performs better than G-MMA. Similar to other figures, same pattern of

performance is observed i.e., the HG-MMA takes the lead followed by the G-

MMA, HG-CMA, then by the G-CMA and ACMA.

3.5 Chapter Conclusions

In this chapter, we have reviewed Givens and hyperbolic rotations, which can be

used for the diagonalization of matrices. However, here we utilized them for the
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Figure 3.5: Average SINR of HG-MMA, G-MMA, HG-CMA, G-CMA and ACMA
vs. SNR for Nt = 5, Nr = 7, NSweeps = 10 and different number of samples Ns.
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minimization of MM cost functions. It is shown that an MM cost function is suit-

able for QAM modulations and has number of advantages over the CM criterion.

Two new iterative batch BSS algorithms named G-MMA and HG-MMA were

presented. The proposed algorithms are designed using a pre-whitening operation

to reduce the complexity of design problem, followed by a recursive separation

method of unitary Givens and J-unitary hyperbolic rotations to minimize the

MM criterion. The difficulties faced while dealing with complex matrices are also

detailed. Thus, instead of using complex matrices, a real transformation is con-

sidered where a special structure of the separation matrix in the whitened domain

is suggested and maintained throughout all transformations.

The proposed algorithms are mainly designed for the blind deconvolution of

MIMO systems involving QAM signals. Simulation results demonstrate their fa-

vorable performance as compared to contemporary batch BSS algorithms. It is

noticed that the G-MMA is cheaper and more suitable for large number of sam-

ples but in the case of small number of samples the HG-MMA should be used.

For higher constellations, the algorithm’s performance deteriorates, especially for

small and moderate sample sizes. In such cases, we will consider in Chapter 4 the

combined criteria using the MMA cost function together with alphabet matching

ones [41, 42].
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CHAPTER 4

ALPHABET MATCHED

ALGORITHMS

Multimodulus criterion is suitable for QAM but as can be observed from Chapter

3, the algorithms based on MM criterion do not work well for high order QAM.

Such modulations are used in many modern communication systems such as LTE

[4] and WiMAX [5], which require high data rates. For these modulations, MMA

leads to a considerable amount of residual errors and does not ensure low SER.

This affects the maximum achievable data rate and quality of service (QoS).

This chapter includes the review of cost functions which are more suitable for

high order QAM, known as alphabet matched (AM) functions. The method of

optimization i.e., sequence of Givens and hyperbolic rotations is used to minimize

the AM cost function, in order to design alphabet matched algorithms (AMA).

At the end, some practical considerations of algorithms and simulation results are

presented, which shows that the newly designed AMA algorithms outperform the
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rest of the batch BSS algorithms in terms of convergence rate, SINR and SER.

4.1 Alphabet Matched (AM) Functions

Considering the fact that the transmitted signal takes discrete values from finite

alphabets and every alphabet member is equidistant from neighbouring members,

some of the key properties that are desired in cost function for high order square

QAM signals are:

1. It should not favor or penalize alphabet members over others, thus it should

have uniform behavior.

2. It should be locally symmetric around each alphabet point.

3. It should place the highest penalty at the maximum deviation i.e., the mid-

point between two alphabet points and should not place any penalty for zero

errors i.e., at the alphabet point.

One can visualize a square QAM constellation and can observe that these proper-

ties incorporate the information of constellation in a proper manner. Properties

1 and 2 consider the fact that the alphabet points are equidistant. Moreover, one

can conclude that properties 1 and 2 serve to shape the cost function in a way

that should not be biased towards any specific alphabet point. Property 3 keeps

track of the amount of error. Thus, these properties should be taken into account

while designing a cost function for higher QAM constellations.
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A number of efforts have been made to incorporate information of the signal

constellation into the cost function, which results in a variety of functions. Here,

we will include some of the widely used functions.

4.1.1 Li’s AMA

The very first cost function considering alphabet matched technique was presented

by Li [43] in 1995 for multilevel signals. Its behaviour is thoroughly studied for

8-PAM and 4-QAM signals by Li et al. [44] in 1997. The presented cost function

is based on the idea to match the output signal with one of the constellation points

and can be written as

JLi(V) =
Nt∑
j=1

E

[
L∏
l=1

|zj(i)− c(l)|2
]

(4.1)

where c(l) = cR(l)+ιcI(l) with l = 1, . . . , L are the constellation points of L-QAM

and cR, cI ∈
{
±1d,±3d, . . . ,±(

√
L− 1)d

}
.

One can notice that for zj(i) = c(l), the product in (4.1) equals zero. It shows

that Li’s function is designed to give a minimum value of 0 at the constellation

points. However, it is observed that this cost function does not satisfy the uni-

formity and symmetry properties i.e., Property 1 and 2. Another drawback of

Li’s AMA cost function is studied in [45] that it requires an extremely good ini-

tialization for satisfactory convergence specifically for high order constellations.

Moreover, this function is expensive in terms of flops because the number of com-

putations depends on the number of constellation points, which increases with the
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order of QAM.

4.1.2 Gauss AMA

To overcome the drawbacks of Li’s AMA, another cost function which is a com-

plement of the sum of Gaussian functions centered at the constellation points was

presented by Barbarossa et al. [45] in 1997, which can be written as

JGauss(V) =
Nt∑
j=1

E

[
1−

L∑
l=1

e
−|zj(i)−c(l)|

2

2σ2

]
(4.2)

where σ ≤ 2d√
−ln(ε)

controls the width of the nulls, 2d is the minimum distance

between constellation points and ε = 0.001 is a small number close to zero. The

relationship for the width of nulls σ can be found by satisfying the inequality

e−|c(k)−c(l)|
2/2σ2 ≈ 0,∀k 6= l. The values of these parameters for the case of square

QAM constellations are listed in Table 4.1, where the width of nulls σ is computed

considering ε = 0.001.

Table 4.1: Parameters of AM cost functions for square QAM and ε = 0.001

Constellation
Minimum distance

2d
Width of nulls

σ
4-QAM 1.4142 0.5381
16-QAM 0.6325 0.2406
64-QAM 0.3086 0.1174
256-QAM 0.1534 0.0584

This cost function satisfies all properties listed above. In terms of computa-

tional complexity, it is still expensive as the number of computations equal to the

number of constellation points. Thus, this results in high cost with the increase

57



www.manaraa.com

in order of constellation.

4.1.3 Sinusoidal AMA

For high order square QAM constellations, He et al. [46] in 2001 suggested a

constellation matched error (CME) term given by

g(x) = 1− sin2n(x
π

2d
) (4.3)

where n is an integer number. This CME term is an even powered sinusoid. It

is designed to give minimum value of 0 at the real or imaginary parts of the

constellation points and maximum value of 1 at the center points in between two

consecutive alphabet points as shown in Figure 4.1a for un-normalized 64-QAM.

Also, similar pattern is obtained with normalized constellation because CME term

adjusts itself according to the minimum distance between the alphabet points.

Moreover, in Figure 4.1b and 4.1c, we have studied the effect of increasing n in

the CME term for normalized 64-QAM. Comparing them, one can notice that

this term becomes sharper at the constellation points with the increase in n.

The designed CME term is thoroughly studied and tested for the blind equal-

ization of QAM signals by Amin et al. [47, 48] using the cost function

JAMA(V) =
Nt∑
j=1

E [g(zj,R(i)) + g(zj,I(i))] (4.4)

where g(x) is the CME term defined in (4.3). The authors have shown that the
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sinusoidal AMA cost function has good local convergence properties and requires a

good initialization. Thus, it should be used along with CMA, which is considered

for having good initial values of the AMA cost function and hence guaranteeing

the overall algorithm convergence.

4.2 AM Algorithms Design

For the design of AM algorithms, the sinusoidal AMA cost function is selected

because of the following reasons:

1. It satisfies all three properties presented in Section 4.1, which are sufficient

conditions to shape the cost function for high order square QAM signals.

2. It is the simplest among all other AM cost functions and computationally

less expensive. Note that, unlike Gauss or Li’s AM cost functions, the

computation in this one is independent of the number of constellation points.

3. It deals with the real and imaginary parts of the output signal, separately.

Thus, it is relatively easier to optimize using real Givens and hyperbolic

rotations. Moreover, for initialization, instead of CMA we will use MMA

algorithm presented in Chapter 3. So, there is no need to transform the

matrices from real to complex, while switching algorithm from MMA to

AMA.

The combination of MMA and AMA is not new and recently used by Labed

et al. [49] in 2012 for the problem of blind equalization. In this work, G-MMA is
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Figure 4.1: The CME term g(x) vs. x for varying n and 64-QAM constellation.
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used as an initialization followed by optimization of sinusoidal AM cost function

(with n = 1 for CME term) using Givens and hyperbolic rotations, which results

in algorithms G-AMA and HG-AMA. As per observations from the rate of conver-

gence for G-MMA shown in Section 3.4.3, G-MMA converges in NSweeps = 5 for

our considered case. Thus, the following algorithms are switched from G-MMA to

AMA after 5 sweeps. Remark: One can choose the number of sweeps in general

as the one corresponding to an almost flat variation of the cost function.

4.2.1 Givens AMA (G-AMA)

After using G-MMA for the algorithm initialization, the required matrix V́ is

updated iteratively until convergence using following Givens rotations

V́n = Gp,q+Nt(θ̇)Gq,p+Nt(θ̇)Gp,q(θ)Gp+Nt,q+Nt(θ)V́
n−1 (4.5)

where n = n0, . . . , NSweeps, NSweeps is the number of iterations of G-AMA until

convergence and n0 is the number of iterations of G-MMA for initialization.

Similar to the case of G-MMA, the rotations Gp,q(θ) and Gp+Nt,q+Nt(θ) are

applied successively using the same angle parameter (θ). Also, the rotations

Gp,q+Nt(θ̇) and Gq,p+Nt(θ̇) are applied with another angle parameter (θ̇). Note

that, these rotations are applied in this way in order to preserve the structure of

V́ given in (3.10).

We only need to find rotation angle parameters (θ) and (θ̇) in order to min-

imize the AM criterion (4.4), using the above explained iterative method. Later
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on, we will express the AM cost function in terms of the angle parameter (θ) which

is computed such that JAMA(θ) is minimized. Now, consider a unitary transfor-

mation Ź = Gp,qÝ, which according to the definition of Givens rotations in (3.1)

only changes rows ‘p’ and ‘q’ of Ý such as

źji = ý
ji

for j 6= p, q

źpi = cos(θ)ý
pi

+ sin(θ)ý
qi

źqi = − sin(θ)ý
pi

+ cos(θ)ý
qi

(4.6)

Similarly, the rotation Gp+Nt,q+Nt with the same angle parameter (θ) modifies rows

‘p+Nt’ and ‘q +Nt’ in a similar way as shown in (4.6). Note that for simplicity,

we keep the notation Ý unchanged even though the matrix is modified after each

rotation. Now, the AMA cost function in (4.4) can be re-written in terms of the

Givens angle parameter (θ) (omitting the terms of Ź that are independent of (θ))

JAMA(θ) =
Ns∑
i=1

[g (źpi) + g (źqi) + g (źp+Nt,i) + g (źq+Nt,i)] (4.7)

where the four terms in (4.7) can be defined using (4.6) and (4.3) with n = 1 as

g (źpi) = 1− sin2
{(

cos(θ)ý
pi

+ sin(θ)ý
qi

)( π
2d

)}
g (źqi) = 1− sin2

{(
− sin(θ)ý

pi
+ cos(θ)ý

qi

)( π
2d

)}
g (źp+Nt,i) = 1− sin2

{(
cos(θ)ý

p+Nt,i
+ sin(θ)ý

q+Nt,i

)( π
2d

)}
g (źq+Nt,i) = 1− sin2

{(
− sin(θ)ý

p+Nt,i
+ cos(θ)ý

q+Nt,i

)( π
2d

)}
(4.8)
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It can be noticed that the above mentioned problem in (4.7) is a bounded non-

linear optimization problem and can be stated as

min
θ
JAMA s.t. θ ∈ [−π/4, π/4] (4.9)

The optimization problem in (4.9) can be solved either by using MATLAB op-

timization toolbox that can be termed as ‘exact solution’ or by using Taylor

series approximation of trigonometric functions around zero, which will be re-

ferred to as ‘approximate solution’. This approximation can be justified using

Figure 4.2, which plots the values of AMA cost function JAMA in (4.7) vs. θ

for some random received pre-whitened signal Ý after 5 sweeps of G-MMA with

Nt = 3, Nr = 5, Ns = 300, SNR = 30dB and normalized 64-QAM constellation.

It can be noticed that the optimum θ◦ is very close to zero. Thus in the following

section, it is showed that for certain range of θ close to zero, the approxima-

tion exactly fits the original values of the AMA cost function. Further, it can

be noticed that this function is periodic with a period of π/2, which justifies the

bounds [−π/4, π/4] in (4.9). This periodicity is because of the periodic nature of

the trigonometric terms appearing in cost function as shown in (4.8). Remark:

During simulations, we found that for low SNR values (i.e., SNR < 15dB for

normalized 64-QAM constellation), the optimum θ is far from zero.
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Figure 4.2: JAMA vs. θ for random received pre-whitened signal after 5 sweeps of
G-MMA with Nt = 3, Nr = 5, Ns = 300, SNR = 30dB and normalized 64-QAM
constellation

A) Exact Solution

There are number of MATLAB optimization toolbox that can be used to find the

local minimum. The concerned optimization problem in (4.9) is bounded and non-

linear. So, the optimization toolbox is selected accordingly which considers upper

and lower bounds, non-linearity and also takes an initial starting point as input to

find the minimum value of the cost function close to that point. In this scenario,

the most suitable option is to use MATLAB optimization toolbox function named

as ‘fminsearchbnd’ which is a non-linear optimization toolbox satisfying the

above mentioned criteria. This MATLAB optimization toolbox is developed by

John DErrico in 2005 and available at MATLAB Central File Exchange, where
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the currently available version updated on 06 Feb., 2012 is used here. Remark:

Our objective here is just to compute an ‘exact’ solution of (4.9), which can be

obtained by a linesearch algorithm as well.

Now, an objective function is defined according to (4.7) and (4.8). Also, for

the initialization of G-AMA, values of matrix Ý corresponds to the one obtained

after 5 sweeps of G-MMA. This objective function is passed to the optimization

toolbox ‘fminsearchbnd’ along with θ0 = 0.001 as a starting point and bounds

θ ∈ [−π/4, π/4], in order to find optimum θ◦ for the minimization of (4.9). Once

optimum θ◦ is found, Givens rotation matrices Gp,q(θ
◦) and Gp+Nt,q+Nt(θ

◦) are

computed using (3.1) and applied to update V́ according to (4.5). The remaining

Givens rotations Gp,q+Nt(θ̇) and Gq,p+Nt(θ̇) can be found similarly by replacing

subscripts accordingly in (4.7) and (4.8) and then computing optimum θ̇◦. Then,

the separation matrix V́ is updated again according to (4.5). This process is

repeated until convergence.

B) Approximate Solution

As observed from Figure 4.2, the optimum θ◦ is close to zero, thus the Taylor

series approximation of trigonometric functions around zero can be applied. Here,

we will consider the approximation up to 4th order using following approximate

identities

sin(θ) ≈ θ − θ3

6
, cos(θ) ≈ 1− θ2

2
+
θ4

24
(4.10)
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Let’s consider the first term of (4.7), which is given in (4.8) as

g (źpi) = 1− sin2
{(

cos(θ)ý
pi

+ sin(θ)ý
qi

)( π
2d

)}
(4.11)

Now, using the trigonometric approximation given in (4.10) to ‘cos(θ)’ and ‘sin(θ)’

in the argument of outer ‘sin’ in (4.11) and expanding the terms results in

g (źpi) ≈ 1− sin2
{(

24ý
pi

+ 24ý
qi
θ − 12ý

pi
θ2 − 4ý

qi
θ3 + ý

pi
θ4
)( π

12d

)}
(4.12)

Now, again the same approximation given in (4.10) is applied leading to

g (źpi) ≈
1

48d4
cpi4 θ

4 +
1

12d3
cpi3 θ

3 +
1

4d2
cpi2 θ

2 − 1

2d
cpi1 θ +

1

2
cpi0 (4.13)
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where

cpi4 = 4π2d2ý2
qi

cos

(
πý

pi

d

)
+ π4ý4

qi
cos

(
πý

pi

d

)
− 3π2d2ý2

pi
cos

(
πý

pi

d

)

− πd3ý
pi

sin

(
πý

pi

d

)
− 6π3dý

pi
ý2
qi

sin

(
πý

pi

d

)

cpi3 = πd2ý
qi

sin

(
πý

pi

d

)
+ π3ý3

qi
sin

(
πý

pi

d

)

+ 3π2dý
pi
ý
qi

cos

(
πý

pi

d

)

cpi2 = πdý
pi

sin

(
πý

pi

d

)
− π2ý2

qi
cos

(
πý

pi

d

)

cpi1 = πý
qi

sin

(
πý

pi

d

)

cpi0 = 1 + cos

(
πý

pi

d

)

(4.14)

Using the same method, the 2nd term g (źqi) of (4.7) can be approximated and

re-written as

g (źqi) ≈
1

48d4
cqi4 θ

4 − 1

12d3
cqi3 θ

3 +
1

4d2
cqi2 θ

2 +
1

2d
cqi1 θ +

1

2
cqi0 (4.15)

where all the coefficients are obtained by replacing ‘p’ with ‘q’ and ‘q’ with ‘p’

in (4.14). The 3rd term g (źp+Nt,i) of (4.7) has the same approximation as given

in (4.13), where the coefficients are obtained by replacing ‘p’ with ‘p + Nt’ and

‘q’ with ‘q + Nt’ in (4.14). The last term g (źq+Nt,i) of (4.7) is approximated as

(4.15), where the coefficients are obtained by replacing ‘p’ with ‘q + Nt’ and ‘q’

with ‘p+Nt’ in (4.14).
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Now, using (4.13) and (4.15) in cost function (4.7) results in 4th order polyno-

mial equation

JAMA(θ) ≈ 1

48d4
C4θ

4 +
1

12d3
C3θ

3 +
1

4d2
C2θ

2 +
1

2d
C1θ +

1

2
C0 (4.16)

where the coefficients in (4.16) are obtained by applying summation over all the

coefficients in (4.13) and (4.15) as shown below

Cl =
Ns∑
i=1

(
cpil + cqil + cp+Nt,il + cq+Nt,il

)
C3 =

Ns∑
i=1

(
cpi3 − c

qi
3 + cp+Nt,i3 − cq+Nt,i3

)
C1 =

Ns∑
i=1

(
−cpi1 + cqi1 − c

p+Nt,i
1 + cq+Nt,i1

)
(4.17)

where l ∈ {0, 2, 4}.

Taking the gradient of (4.16) with respect to θ, we get

∂JAMA(θ)

∂θ
≈ 1

12d4
C4θ

3 +
1

4d3
C3θ

2 +
1

2d2
C2θ +

1

2d
C1 (4.18)

where the coefficients are the same as defined in (4.17). Equation (4.18) is a simple

3rd order polynomial equation and its solution is obtained by equating it to zero.

Out of the three possible solutions, the optimum θ◦ is selected which results in

minimum value of JAMA(θ) in (4.7).

Now, to justify that the approximation in (4.16) is good enough and will result

in same minimum of the original optimization problem in (4.7), we have compared
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the original cost function and approximated one for a certain range of θ around

zero in Figure 4.3.
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Figure 4.3: Comparison of exact and approximated Givens AMA cost function for
random received pre-whitened signal after 5 sweeps of G-MMA with Nt = 3, Nr =
5, Ns = 300, SNR = 30dB and normalized 64-QAM constellation

The remaining Givens rotations Gp,q+Nt(θ̇) and Gq,p+Nt(θ̇) can be found simi-

larly by replacing subscripts accordingly and computing optimum θ̇◦. Then, the

rotations are applied successively on Ý.

In summary, pre-filtered separation matrix V́ is initialized as identity matrix

i.e., V́ = I2Nt . Then, G-MMA is applied for NSweeps = 5 followed by the update

of the matrix V́ according to (4.5) by applying Givens rotations on modified Ý

using the above explained method, until convergence. The overall algorithm is

summarized in Table 4.2.
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Table 4.2: Givens AMA (G-AMA) Algorithm

Initialization: V́ = I2Nt
1. Pre-whitening: Y = BY using (2.10)
2. Construct real matrix Ý using (3.10)
3. Givens Rotations:
for n = 1 : NSweeps do

if n <= 5 then
a) Apply G-MMA as given in Table 3.1

else
for p = 1 : Nt − 1 do

for q = p+ 1 : Nt do
b) Find optimum (θ◦) using roots of (4.18) which gives minimum
value of (4.7)
c) Compute Gp,q &Gp+Nt,q+Nt using (3.1) for same (θ◦)

d) Ý = Gp,q Gp+Nt,q+NtÝ

e) V́ = Gp,q Gp+Nt,q+NtV́
repeat (b to e) for (p, q +Nt) & (q, p+Nt) using same (θ̇◦)

end for
end for

end if
end for
4. Construct complex matrix W similar to V using (2.14) and (3.10)
5. Estimated Sources: Ŝ = WY
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4.2.2 Hyperbolic G-AMA (HG-AMA)

Similar to the case of G-MMA, the performance of G-AMA is not satisfactory

for small number of samples Ns. In this case, for which A is far from unitary

matrix, J-unitary real hyperbolic rotations are applied alternatively along with

the Givens rotations to overcome the limitation of ill-whitening. This results in

algorithm HG-AMA, which is explained below.

For HG-AMA, first of all G-MMA is used for initialization. Then, matrix

V is updated iteratively until convergence using following hyperbolic and Givens

rotations

V́n = Γp,q+NtΓq,p+NtΓp,qΓp+Nt,q+NtV́
n−1

Γp,q = Gp,qHp,q

(4.19)

where Gp,q and Hp,q refer to the Givens and hyperbolic transformations, respec-

tively. The hyperbolic rotations Hp,q and Hp+Nt,q+Nt are applied using the same

parameter (γ), while Hp,q+Nt and Hq,p+Nt are applied using another same but

opposite parameter (γ̇) and (−γ̇), respectively. Note that the rotations are de-

signed in this way to preserve the structure of matrix V́ in (3.10). Below, we give

a brief of finding the hyperbolic rotation parameters to minimize the sinusoidal

AMA criterion in (4.4).

Similar to the case of Givens rotations, let us consider a unitary transformation

Ź = Hp,qÝ, which according to the definition of hyperbolic rotations in (3.2) only
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changes rows ‘p’ and ‘q’ of Ý such as

źji = ý
ji

for j 6= p, q

źpi = cosh(γ)ý
pi

+ sinh(γ)ý
qi

źqi = sinh(γ)ý
pi

+ cosh(γ)ý
qi

(4.20)

Similarly, the rotation Hp+Nt,q+Nt with the same parameter (γ) modifies rows

‘p+Nt’ and ‘q+Nt’ in the same way as shown in (4.20). Thus, AMA cost function

can be re-written in terms of hyperbolic rotations parameter (γ) (omitting the

terms of Ź independent of (γ)) as

JAMA(γ) =
Ns∑
i=1

[g (źpi) + g (źqi) + g (źp+Nt,i) + g (źq+Nt,i)] (4.21)

where the four terms in (4.21) can be defined using (4.20) and (4.3) as

g (źpi) = 1− sin2
{(

cosh(γ)ý
pi

+ sinh(γ)ý
qi

)( π
2d

)}
g (źqi) = 1− sin2

{(
sinh(γ)ý

pi
+ cosh(γ)ý

qi

)( π
2d

)}
g (źp+Nt,i) = 1− sin2

{(
cosh(γ)ý

p+Nt,i
+ sinh(γ)ý

q+Nt,i

)( π
2d

)}
g (źq+Nt,i) = 1− sin2

{(
sinh(γ)ý

p+Nt,i
+ cosh(γ)ý

q+Nt,i

)( π
2d

)}
(4.22)

Figure 4.4 shows the values of AMA cost function JAMA in (4.21) vs. (γ)

for some random received pre-whitened signal Ý after 5 sweeps of G-MMA with

Nt = 3, Nr = 5, Ns = 300, SNR = 30dB and normalized 64-QAM constellation. It

can be noticed that optimum (γ◦) is very close to zero. Thus, we can apply Taylor
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series approximation of hyperbolic and trigonometric functions around zero, in

order to find the solution of the optimization problem in (4.21). Moreover, it can

be noticed that this function is not periodic, thus the optimization problem is

unbounded.

γ = −0.0172
JAMA = 207.9343
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Figure 4.4: JAMA vs. γ for random received pre-whitened signal after NSweeps = 5
of G-MMA with Nt = 3, Nr = 5, Ns = 300, SNR = 30dB and normalized 64-QAM
constellation

In the following sections, two possible ways are detailed to solve the optimiza-

tion problem in (4.21). One of it is named ‘exact solution’ and uses the MATLAB

optimization toolbox ‘fminsearch’, while the other one utilizes the Taylor series

approximation as mentioned above, thus referred as ‘approximate solution’.
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A) Exact Solution

The optimization problem in (4.21) is unbounded and non-linear. So, the opti-

mization toolbox is selected accordingly which considers non-linearity and also

takes an initial starting point as input to find the minimum value of the cost

function close to that point. In this scenario, the most suitable option is to use

MATLAB optimization toolbox function named as ‘fminsearch’ which is a non-

linear optimization toolbox and also satisfies the above mentioned criteria.

An objective function is defined according to (4.21) and (4.22). Then, it is

passed to the toolbox ‘fminsearch’ with γ0 = 0.001 as starting point. The

toolbox returns the optimum hyperbolic rotation parameter (γ◦), which mini-

mizes (4.21). Using (γ◦) and (3.2), the hyperbolic rotation matrices Hp,q(γ
◦) and

Hp+Nt,q+Nt(γ
◦) are computed and applied to update V́ according to (4.19).

For the remaining hyperbolic rotations Hp,q+Nt(γ̇) and Hq,p+Nt(−γ̇), the sinu-

soidal AMA cost function can be re-written as (omitting constant terms of Ź)

JAMA(γ̇) =
Ns∑
i=1

[g (źpi) + g (źq+Nt,i) + g (źqi) + g (źp+Nt,i)] (4.23)

with

g (źpi) = 1− sin2
{(

cosh(γ̇)ý
pi

+ sinh(γ̇)ý
q+Nt,i

)( π
2d

)}
g (źq+Nt,i) = 1− sin2

{(
sinh(γ̇)ý

pi
+ cosh(γ̇)ý

q+Nt,i

)( π
2d

)}
g (źqi) = 1− sin2

{(
cosh(−γ̇)ý

qi
+ sinh(−γ̇)ý

p+Nt,i

)( π
2d

)}
g (źp+Nt,i) = 1− sin2

{(
sinh(−γ̇)ý

qi
+ cosh(−γ̇)ý

p+Nt,i

)( π
2d

)}
(4.24)
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Now, another objective function is defined using (4.23) and (4.24). The optimum

(γ̇◦) and thus the rotation matrices Hp,q+Nt and Hq,p+Nt are computed using the

above explained method and applied successively on Ý to compute the separation

matrix V́ according to (4.19). The process is repeated until convergence.

B) Approximate Solution

In order to find the approximate solution, we will use the Taylor series approxi-

mation of trigonometric angles given in (4.10) and hyperbolic angles around zero

up to 4th order, which can be written as

sinh(γ) ≈ γ +
γ3

6
, cosh(γ) ≈ 1 +

γ2

2
+
γ4

24
(4.25)

Let’s consider the first term of (4.21), which is given in (4.22) as

g (źpi) = 1− sin2
{(

cosh(γ)ý
pi

+ sinh(γ)ý
qi

)( π
2d

)}
(4.26)

Now, applying the hyperbolic angle approximation given in (4.25) to ‘cosh(γ)’ and

‘sinh(γ)’ in the argument of ‘sin’ in (4.26) and expanding the terms, we get

g (źpi) ≈ 1− sin2
{(

24ý
pi

+ 24ý
qi
γ + 12ý

pi
γ2 + 4ý

qi
γ3 + ý

pi
γ4
)( π

12d

)}
(4.27)

Finally, the trigonometric approximation given in (4.10) is used leading to

g (źpi) ≈
1

48d4
cpi4 γ

4 +
1

12d3
cpi3 γ

3 − 1

4d2
cpi2 γ

2 − 1

2d
cpi1 γ +

1

2
cpi0 (4.28)
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where

cpi4 = π4ý4
qi

cos

(
πý

pi

d

)
+ 6π3dý

pi
ý2
qi

sin

(
πý

pi

d

)
− 4π2d2ý2

qi
cos

(
πý

pi

d

)

− 3π2d2ý2
pi

cos

(
πý

pi

d

)
− πd3ý

pi
sin

(
πý

pi

d

)

cpi3 = π3ý3
qi

sin

(
πý

pi

d

)
− πd2ý

qi
sin

(
πý

pi

d

)

− 3π2dý
pi
ý
qi

cos

(
πý

pi

d

)

cpi2 = π2ý2
qi

cos

(
πý

pi

d

)
+ πdý

pi
sin

(
πý

pi

d

)

cpi1 = πý
qi

sin

(
πý

pi

d

)

cpi0 = 1 + cos

(
πý

pi

d

)

(4.29)

Using the same method, the other terms g (źqi), g (źp+Nt,i) and g (źq+Nt,i) of (4.21)

can be approximated as (4.28), where the coefficients are obtained by replacing

‘p’ with ‘q’ and ‘q’ with ‘p’ for g (źqi), ‘p’ with ‘p + Nt’ and ‘q’ with ‘q + Nt’ for

g (źp+Nt,i) and ‘p’ with ‘q +Nt’ and ‘q’ with ‘p+Nt’ for g (źq+Nt,i) in (4.29).

Now, we have the full approximation of our optimization problem in (4.21),

which is just a 4th order polynomial equation and can be written as

JAMA(γ) ≈ 1

48d4
C4γ

4 +
1

12d3
C3γ

3 − 1

4d2
C2γ

2 − 1

2d
C1γ

1 +
1

2
C0 (4.30)

where the coefficients in (4.30) are obtained by applying summation over all the
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coefficients in (4.28) as shown below

Cl =
Ns∑
i=1

(
cpil + cqil + cp+Nt,il + cq+Nt,il

)
(4.31)

where l ∈ {0, . . . , 4}.

Taking the gradient with respect to (γ) of AMA cost function in (4.30), we get

∂JAMA(γ)

∂γ
≈ 1

12d4
C4γ

3 +
1

4d3
C3γ

2 − 1

2d2
C2γ −

1

2d
C1 (4.32)

Now, equating (4.32) to zero results in three possible solutions. Out of them, the

optimum (γ◦) is selected which results in minimum value of JAMA(γ) in (4.21).

Figure 4.5 shows the comparison of original cost function and approximated

one for a certain range of (γ) around zero. It can be noticed that for this range

of values of (γ), the approximation in (4.30) gives the same result as of original

optimization problem in (4.21).

The remaining hyperbolic rotations Hp,q+Nt(γ̇) and Hq,p+Nt(−γ̇) are applied

using another hyperbolic angle parameter (γ̇). The optimization problem for (γ̇)

is given in (4.23). The first two terms g (źpi) and g (źq+Nt,i) of cost function (4.23)

have the same approximation as given in (4.28) with the replacement of (γ) by

(γ̇). The coefficients are obtained by replacing ‘q’ with ‘q+Nt’ in (4.29) for g (źpi).

Whereas, the coefficients for g (źq+Nt,i) are obtained by replacing ‘p’ with ‘q+Nt’

and ‘q’ with ‘p’ in (4.29). Using the above explained method, the third term g (źqi)
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Figure 4.5: Comparison of exact and approximated hyperbolic AMA cost function
for random received pre-whitened signal after NSweeps = 5 of G-MMA with Nt =
3, Nr = 5, Ns = 300, SNR= 30dB and normalized 64-QAM constellation

of the cost function in (4.23) can be approximated as

g (źqi) ≈
1

48d4
cqi4 γ̇

4 − 1

12d3
cqi3 γ̇

3 − 1

4d2
cqi2 γ̇

2 +
1

2d
cqi1 γ̇ +

1

2
cqi0 (4.33)

where the coefficients are obtained by replacing ‘p’ with ‘q’ and ‘q’ with ‘p + Nt’

in (4.29). The last term g (źp+Nt,i) has the same approximation as given in (4.33),

where the coefficients are obtained by replacing ‘p’ with ‘p + Nt’ in (4.29). The

full form of approximated cost function in (4.23) can be written as

JAMA(γ̇) ≈ 1

48d4
C4γ̇

4 +
1

12d3
C3γ̇

3 − 1

4d2
C2γ̇

2 +
1

2d
C1γ̇

1 +
1

2
C0 (4.34)

where the coefficients in (4.34) are obtained by applying summation over all the
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coefficients in (4.28) and (4.33) as shown below

Cl =
Ns∑
i=1

(
cpil + cq+Nt,il + cqil + cp+Nt,il

)
C3 =

Ns∑
i=1

(
cpi3 + cq+Nt,i3 − cqi3 − c

p+Nt,i
3

)
C1 =

Ns∑
i=1

(
−cpi1 − c

q+Nt,i
1 + cqi1 + cp+Nt,i1

)
(4.35)

where l ∈ {0, 2, 4}.

The final solution is obtained by taking the gradient and following the same

procedure as explained before, where the gradient of (4.34) is written as

∂JAMA(γ̇)

∂γ̇
≈ 1

12d4
C4γ̇

3 +
1

4d3
C3γ̇

2 − 1

2d2
C2γ̇ +

1

2d
C1 (4.36)

Once we obtain the solution (γ̇◦), the hyperbolic rotation matrices Hp,q+Nt(γ̇
◦)

and Hq,p+Nt(−γ̇◦) are computed using (3.2). The separation matrix V́ is then

updated according to (4.19).

In summary, pre-filtered separation matrix V́ is initialized as identity matrix

i.e., V́ = I2Nt . Then, G-MMA is applied for 5 sweeps followed by the update of

the matrix V́ according to (4.19) by applying Givens and hyperbolic rotations

successively on modified Ý using the above explained method, until convergence.

The overall algorithm is summarized in Table 4.3.
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Table 4.3: Hyperbolic Givens AMA (HG-AMA) Algorithm

Initialization: V́ = I2Nt
Subspace projection or approximate pre-whitening using (2.10) if Nr > Nt

1. Construct real matrix Ý using (3.10)
2. Hyperbolic & Givens Rotations:
for n = 1 : NSweeps do

if n <= 5 then
a) Apply G-MMA as given in Table 3.1

else
for p = 1 : Nt − 1 do

for q = p+ 1 : Nt do
b) Find optimum (γ◦) using roots of (4.32) which gives minimum
value of (4.21)
c) Compute Hp,q &Hp+Nt,q+Nt using (3.2) for same (γ◦)

d) Ý = Hp,qHp+Nt,q+NtÝ

e) V́ = Hp,qHp+Nt,q+NtV́
f) Apply Givens rotations using (b to e) of Table 4.2
repeat steps (b to f) for (p, q + Nt) & (q, p + Nt) using
(θ̇◦, γ̇◦) & (θ̇◦,−γ̇◦), respectively

end for
end for

end if
end for
3. Construct complex matrix W similar to V using (2.14) and (3.10)
4. Estimated Sources: Ŝ = WY
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4.3 Practical Considerations

We provide here some comments to get more insight into the proposed algorithms.

4.3.1 Numerical Cost

Taking into account the structure of the rotation matrices, the numerical cost of

the proposed algorithms are compared with other CMA-like BSS algorithms in

terms of the number of flops per sweep in Table 4.4. Note that a flop corresponds

to a real multiplication and a real addition. As can be seen from Table 4.4, the

Table 4.4: Numerical complexity comparison of different BSS algorithms

BSS Algorithm Complexity Order
HG-AMA 140NsN

2
t +O(NsNt)

G-AMA 70NsN
2
t +O(NsNt)

HG-MMA 40NsN
2
t +O(NsNt)

G-MMA 20NsN
2
t +O(NsNt)

HG-CMA 30NsN
2
t +O(NsNt)

G-CMA 15NsN
2
t +O(NsNt)

ACMA O(NsN
4
t )

proposed algorithms are much cheaper than ACMA and of the same cost order

with G-CMA and HG-CMA. Moreover, the proposed algorithms have very fast

convergence (typically less than 10 sweeps) as shown next in simulation experi-

ments. Also, it can be noticed that HG-AMA is more expensive but still in terms

of performance it is much better than all the other algorithms as can be observed

from the simulations results presented next.

All considered BSS algorithms use a pre-whitening operation which costs

O(NsN
2
r ) flops. The numerical cost of G-MMA and HG-MMA in Table 4.4 has
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to be multiplied by the number of sweeps to obtain the overall cost.

4.3.2 Adaptive implementation

The numerical cost of the designed iterative batch algorithms increases linearly

with the sample size Ns. Furthermore, in real life environments, systems are time

varying and hence the separation matrix W has to be re-estimated or updated

along the time axis. Thus, for slowly time varying systems, this update can

be obtained by using adaptive estimation methods. Utilizing a sliding window

technique as in [23], one can achieve such source separation in an adaptive manner

with a numerical cost proportional to O(ŃsN
2
t ) where Ńs is the window size

(instead of total sample size Ns).

4.3.3 Complex implementation

As shown in section 3.3.1, the real matrix representation has been introduced to

overcome the difficulties encountered for the optimization of parameters of com-

plex Givens and hyperbolic rotations. However, we can observe that the obtained

results can be cast into complex matrix forms using the following straightforward

relations:

Gp,q(θ)Gp+Nt,q+Nt(θ) Ý ⇐⇒ Gp,q(θ, 0)Y

Hp,q(γ)Hp+Nt,q+Nt(γ) Ý ⇐⇒ Hp,q(γ, 0)Y

Gp,q+Nt(θ̇)Gq,p+Nt(θ̇) Ý ⇐⇒ Gp,q(θ,−
π

2
)Y

Hp,q+Nt(γ́)Hq,p+Nt(γ́) Ý ⇐⇒ Hp,q(γ,−
π

2
)Y

(4.37)

82



www.manaraa.com

where all the matrices on left side of (4.37) are real and the right ones are complex.

Note that: Somehow, we have replaced the two degrees of freedom of complex

rotations Gp,q(θ, α) (resp. Hp,q(γ, β)) by the two free parameters θ and θ̇ (resp. γ

and γ́). This way we have avoided the complex non-linear optimization problem

discussed in section 3.3.1.

4.3.4 Performance

The main advantage of the proposed algorithms resides in their fast convergence

in terms of the number of sweeps (typically less than 10 sweeps are needed for

convergence) and also in terms of sample size (typically Ns = O(10Nt) is sufficient

for the algorithm’s convergence). Comparatively, the ACMA method requires

Ns = O(10N2
t ) samples for its convergence and standard CMA-like methods need

even more samples to converge to their steady state.

4.4 Simulation Results

In order to evaluate the performance of the proposed algorithms, simulation re-

sults are presented in this section. Here, we have shown a comparison with our

batch BSS algorithms presented in Chapter 3 i.e., G-MMA and HG-MMA, which

deals with the MM criterion and performs better than contemporary batch BSS

algorithms such as ACMA, G-CMA and HG-CMA. As a performance measure,

SINR, convergence rate and SER are used, where SINR is defined in (3.41).

We consider a MIMO system consisting of 5 transmitters and 7 receivers (Nt =
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5, Nr = 7) with the data model given in Section 2.1. Every uncoded data symbol

transmitted by each source are drawn from 64-QAM and 256-QAM constellations.

The resulting signals are then passed through a channel matrix A, generated

randomly at each Monte Carlo run with controlled conditioning and with i.i.d

complex Gaussian variable entries of zero mean and unity variance. The noise

variance is adjusted according to specified signal to noise ratio (SNR). Further,

sources, noise and channel have the same properties as specified in Section 2.2.1.

The results are averaged over 1000 Monte Carlo runs.

4.4.1 Experiment 1: Exact vs. Approximate Solution of

G-AMA and HG-AMA

In this experiment, we compare the performance of exact and approximate so-

lutions presented for G-AMA and HG-AMA in terms of SINR vs. SNR. Figure

4.6a and 4.6b shows the plots for 64-QAM and 256-QAM constellations, respec-

tively. The number of sweeps NSweeps is fixed at 10, where we used 5 sweeps of

G-MMA followed by 5 sweeps of AMAs. The number of samples Ns is selected as

200 and 500 for 64-QAM and 256-QAM, respectively. From Figure 4.6, we notice

that both the exact and approximate solutions have the same performance for the

considered constellations. Therefore, in the following simulations for the G-AMA

and HG-AMA, we will use the approximate solution, as it is cheaper and easier

to implement.
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Figure 4.6: Average SINR of exact and approximate solution of HG-AMA and
G-AMA vs. SNR for Nt = 5, Nr = 7, NSweeps = 10.
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4.4.2 Experiment 2: Finding Optimum Number of Sweeps

Here, we examine the effect of the number of sweeps NSweeps on the performance

of the G-AMA and HG-AMA. Figure 4.7 compares the SINR vs. SNR for different

number of sweeps. In this simulation, Ns = 200 symbols are drawn from 64-QAM

constellation. We notice that the performance of proposed algorithms increases

with the number of sweeps and remains almost unchanged after 8 sweeps (5 G-

MMA + 3 AMA sweeps). So, in the following simulations we will fix the number

of sweeps to 8.
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Figure 4.7: Average SINR of HG-AMA and G-AMA vs. SNR for different NSweeps

considering Nt = 5, Nr = 7, Ns = 200 and 64-QAM constellation.

86



www.manaraa.com

4.4.3 Experiment 3: Comparison of Rate of Convergence

In Figure 4.8, we have compared the convergence rate of the proposed algorithms

with G-MMA and HG-MMA. Note that all of them are iterative algorithms. The

SNR is fixed at 30 dB and Ns is selected as 200 and 500 for 64-QAM and 256-

QAM, respectively. It can be noticed that for the considered case, G-MMA and

HG-MMA converge in 5 sweeps, while G-AMA and HG-AMA converges in 8

sweeps. Even though the proposed algorithms G-AMA and HG-AMA require 3

extra sweeps, the performance is much better than the HG-MMA and G-MMA.

4.4.4 Experiment 4: Effect of the Number of Samples

Figure 4.9a and 4.9b, show the SINR performance of our proposed algorithms vs.

the number of samples Ns for 64-QAM and 256-QAM constellations, respectively.

The SNR and the total number of sweeps NSweeps are fixed at 30 dB, and 8, respec-

tively. It can be noticed that as expected, the larger the number of samples the

better the performance of proposed algorithms. However, we observe a threshold

point after which the gain is not significant as the SINR will be essentially limited

by the SNR value. It can be seen that the performance of AM algorithms is better

than MM algorithms. Also, HG-AMA takes the lead among all other algorithms.

HG-AMA reaches a maximum SINR of 28 dB in Ns = 250 samples for 64-QAM

and Ns = 600 samples for 256-QAM.
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Figure 4.8: Average SINR of HG-AMA, G-AMA, HG-MMA and G-MMA vs.
NSweeps for Nt = 5, Nr = 7 and SNR = 30dB.
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Figure 4.9: Average SINR of HG-AMA, G-AMA, HG-MMA and G-MMA vs. the
number of samples (Ns) for Nt = 5, Nr = 7, SNR = 30dB and NSweeps = 8.
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4.4.5 Experiment 5: Comparison based on SINR

Figure 4.10a compares the SINR performance of the AM and MM algorithms as

a function of SNR. In this figure, two different number of samples (Ns = 150

and Ns = 300) are considered for 64-QAM constellation. As noticed previously,

all algorithms perform better for large number of samples. Also, the difference

between the performance of the HG-AMA and HG-MMA increases with the in-

crease in number of samples. The G-AMA cannot perform well for small number

of samples because of the ineffective pre-whitening operation. It is very clear from

the figure that the MM algorithms are not suitable for this constellation. For an

SNR higher than 22dB, the performance of HG-AMA for small number of sam-

ples i.e., Ns = 150 is better than G-AMA even with large number of samples i.e.,

Ns = 300.

In Figure 4.10b, we consider the case of 256-QAM constellation with two dif-

ferent number of samples (Ns = 300 and Ns = 900). It is noticed that the

performance of proposed algorithms is significantly better than other algorithms

even for small number of samples Ns. For an SNR higher than 32dB, the per-

formance of HG-AMA for small number of samples i.e., Ns = 300 is better than

G-AMA even with large number of samples i.e., Ns = 900.

4.4.6 Experiment 6: Comparison based on SER

Figure 4.11a and 4.11b depict the SER of AM and MM algorithms vs. SNR for

the case of 64-QAM and 256-QAM constellations, respectively. In both figures,
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Figure 4.10: Average SINR of HG-AMA, G-AMA, HG-MMA and G-MMA vs.
SNR for Nt = 5, Nr = 7, NSweeps = 8 and different number of samples Ns.
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different number of samples are considered i.e., for 64-QAM (Ns = 150 and Ns =

300) and for 256-QAM (Ns = 300 and Ns = 900). As noticed previously, the

performance of the HG-AMA is significantly better than all the other algorithms.

Similar to other figures, same pattern of performance is observed i.e., the HG-

AMA takes the lead followed by the G-AMA, HG-MMA and then by the G-MMA.

Comparison of Figure 4.11a and 4.11b show that for small number of samples, the

performance of all algorithms is nearly the same. However, for large number of

samples HG-AMA performs better than every other algorithm. In fact, we can

say that HG-AMA is the only algorithm which works very well for higher QAM

constellation.

4.5 Chapter Conclusions

As per our conclusions from Chapter 3, the MM criterion is not suitable for higher

QAM signals. Thus, we have reviewed AM criterion which incorporates informa-

tion about the higher QAM constellations in a better way. It is known that the

AM criterion has good local convergence properties and should be initialized with

CMA/MMA. However, in our design we have used our algorithm G-MMA as an

initialization then the algorithm is switched to AM criterion minimization. Thus,

two new iterative batch BSS algorithms are presented namely the G-AMA and

HG-AMA. The proposed algorithms are designed using a pre-whitening operation

to reduce the complexity of optimization problem and then initialized with G-

MMA, followed by a recursive separation method of unitary Givens and J-unitary
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hyperbolic rotations to minimize the AM criterion. Similar to G-MMA and HG-

MMA, we have used real rotation matrices for the design of AM algorithms.

For the minimization of AM criterion using Givens and hyperbolic rotations,

two possible solutions are presented. One of them uses MATLAB optimization

toolbox ‘fminsearchbnd’ and ‘fminsearch’, which is named as ‘exact solution’. The

other solution utilizes the trigonometric approximations around zero as we have

observed that the optimum parameters of rotation matrices are very close to zero.

Thus, this solution is named as ‘approximate solution’, which involves solving a

simple 3rd order polynomial equation.

The proposed algorithms are mainly designed for the blind deconvolution of

MIMO systems involving higher QAM signals. Simulation results demonstrate

their favorable performance as compared to G-MMA and HG-MMA. Thus, we can

say that the newly designed algorithms G-AMA and HG-AMA performs better

than all other contemporary batch BSS algorithms as well as G-MMA and HG-

MMA.
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CHAPTER 5

CONCLUSION AND FUTURE

WORK

5.1 Conclusions

In this thesis, fundamental problems with the physical layer for MIMO systems

are addressed. The targeted problems include channel estimation and blind de-

convolution. Mainly, the problem focussed here is to design algorithms for higher

QAM signals without using pilot symbols.

In the start, basic concepts related to blind source separation problem are

presented. The literature review shows that there is a need of good batch BSS

algorithms mainly for QAM signals, because such signals are highly used in mod-

ern communication systems. After the motivation behind this work, the model

for MIMO communication system is presented. The underlying assumptions and

general methodology of BSS algorithms are studied.
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Next, the unitary Givens and J-unitary hyperbolic rotations are reviewed for

the optimization of cost functions. The multimodulus (MM) criterion which is

suitable for QAM signals is minimized using iterative Givens and hyperbolic ro-

tations. During the design of algorithms, it has been found that the complex

rotations results in complicated optimization problem, which is not easy to solve.

Moreover, as MM criterion deals with the real and imaginary parts of signal

separately, thus it is showed that using real Givens and hyperbolic rotations is

more convenient than complex ones. Using real Givens and hyperbolic rotations,

two iterative batch BSS algorithms are presented dealing with the MM criterion

and thus named as G-MMA and HG-MMA. A MATLAB based simulation setup

showed that the designed algorithms perform better than contemporary batch

BSS algorithms for QAM signals. Also, these algorithms are less expensive and

has better convergence rate.

It is observed during simulations that the designed and contemporary batch

BSS algorithms do not provide satisfactory performance for higher QAM signals

such as 64-QAM. Thus, two new algorithms are presented dealing with the al-

phabet matched (AM) criterion. For the design of these algorithms, the same

optimization method of iterative Givens and hyperbolic rotations are used and

thus named as G-AMA and HG-AMA. During the design, it has been found that

the optimization is quite complicated involving several non-linear terms. Thus,

an approximate solution using trigonometric approximations is presented, which

is compared with the exact solution obtained using MATLAB optimization tool-

96



www.manaraa.com

box. The comparison showed that the optimum optimization parameters are very

close to zero. Thus, our approximation is valid and results in the same solution.

These algorithms are compared with G-MMA and HG-MMA in terms of SINR,

convergence rate, and SER. The comparison showed that G-AMA and specially

HG-AMA is the most suitable algorithm for higher QAM signals such as 64-QAM

and 256-QAM. HG-AMA is capable of blindly and efficiently separating a number

of higher QAM signals in a MIMO communication system.

In summary, the proposed algorithms are mainly designed for the blind de-

convolution of MIMO systems involving higher QAM signals. Simulation results

demonstrate their favorable performance as compared to contemporary batch BSS

algorithms.

5.2 Future Work

Following are the suggested topics for future work related to the work presented

in this thesis.

1. This thesis deals with the batch BSS algorithms where the channel is as-

sumed to be constant for a data packet consisting of some small number

of samples. However, a number of communication system models includes

mobility where the channel varies nearly at every symbol. Thus, adaptive

algorithms are more suitable for these kind of scenarios. The presented al-

gorithms can be modified for such time-varying channels using the concepts

of adaptive BSS methods.
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2. The performance of proposed algorithms are evaluated using simulation re-

sults only. Thus, one can use actual channel data to verify the effectiveness

of proposed algorithms.

3. Similar optimization method can be used to design algorithms for non-square

multimodulus signals for which a number of cost functions are available in

literature.

4. While going through the literature, it has been found that an analytical

method dealing with the MM criterion is derived but not optimized due

to unavailability of joint diagonalization method for non-square matrices.

However, the joint diagonalization technique using Givens and hyperbolic

rotations is valid also for non-square matrices. Thus, it can be used to design

a batch analytical BSS algorithm for MM and AM criterion.
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APPENDIX A

In order to separate the real and imaginary parts of zpi and zqi given in (3.7),

following equalities can be used

zpi,R =
zpi + zHpi

2
zpi,I =

zpi − zHpi
2ι

(A.1)

Using double angle identities, (A.1) and (3.7), we can write

z2pi,R = gT
j c + g8 (A.2)

where

c =

[
cos(2θ) cos(2θ) cos(2α) cos(2θ) sin(2α) sin(2θ) cos(α)

sin(2θ) sin(α) cos(2α) sin(2α)

]T
gj =

[
g1 · · · g7

] (A.3)
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with

g1 =
y2
pj,R

2
−

y2
qj,R

4
−

y2
qj,I

4
g2 =

y2
qj,I

4
−

y2
qj,R

4
g3 =

y
qj,R

y
qj,I

2

g4 = y
pj,R

y
qj,R

g5 = −y
pj,R

y
qj,I

g6 =
y2
qj,R

4
−

y2
qj,I

4

g7 = −
y
qj,R

y
qj,I

2
g8 =

y2
pj,R

2
+

y2
qj,R

4
+

y2
qj,I

4

Remaining three terms can be found similarly having different elements of gj.
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APPENDIX B

We will show here the solution of eigenvalue problem of the form

J = vTTv (B.1)

with the constraint ‖v‖2 = 1, where v is a column vector and T is a square

matrix. So, using Lagrange multiplier method, we can represent it as

L(v, λ) = vTTv − λ(vTv − 1) (B.2)

Taking the partial derivative of (B.2) with respect to v and setting it to zero

results in

vTT = λvT (B.3)

which shows the v is an eigenvector of matrix T corresponding to the eigenvalue

λ and must have a unit norm. Now, using (B.3) in (B.1) provides

J = λvTv = λ‖v‖2 = λ (B.4)
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Thus, in order to minimize cost function J , one should use minimum λ. This

shows that the optimum v◦ which minimizes J in (B.1) is the unit norm eigen-

vector of matrix T corresponding to the smallest eigenvalue.
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APPENDIX C

In order to show that (3.31) given in subsection 3.3.3 is a 4-th order polynomial

equation, let us consider the 2 × 2 matrices U and Λ = diag

([
λ1 λ2

])
be the

generalized eigenvectors and eigenvalues matrices of the matrix pair (R,J2), i.e.,

R = J2UΛU−1 (C.1)

and hence

(R + λJ2)
−1 = U (Λ + λI2)

−1 U−1J2 (C.2)

Using (C.2) in (3.31), we get

rTU (Λ + λI2)
−2 U−1J2r = aT (Λ + λI2)

−2 b = 1 (C.3)

where

aT = rTU =

[
a1 a2

]
b = U−1J2r =

[
b1 b2

]T
(Λ + λI2)

−2 = diag

[
(λ+ λ1)

−2 (λ+ λ2)
−2

]
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So, (C.3) can be re-written as

2∑
i=1

aibi

(λ+ λi)
2 = 1 (C.4)

which is equivalent to

2∏
i=1

(λ+ λi)
2 −

(
a1b1(λ+ λ2)

2 + a2b2(λ+ λ1)
2
)

(C.5)

which is a 4-th order polynomial equation of the form

P4(λ) = c0λ
4 + c1λ

3 + c2λ
2 + c3λ+ c4 = 0

with coefficients given as

c0 = 1

c1 = 2 (λ1 + λ2)

c2 =
2∑
i=1

λ2i + 4λ1λ2 − aTb

c3 = 2
2∑
i=1

{
(λi − aibi)

2∑
j=1,j 6=i

λj

}

c4 = λ21λ
2
2 −

2∑
i=1

aibi

2∏
j=1,j 6=i

λ2j
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